Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Infect Immun ; 90(3): e0063721, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35191758

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) remain a major cause of diarrheal mortality and morbidity in children in low-resource settings. Few studies have explored the consequences of simultaneous intoxication with heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) despite the increased prevalence of wild ETEC isolates expressing both toxins. We therefore used a combination of tissue culture and murine models to explore the impact of simultaneous ST + LT intoxication on epithelial and myeloid cells. We report that LT induces sustained production of interleukin 33 (IL-33) and interleukin 1 receptor antagonist (IL-1Ra) in T84 intestinal epithelial cells via cAMP production and protein kinase A activation. We demonstrate that combined ST + LT intoxication hastens epithelial transcriptional responses induced more slowly by LT alone. ST- and LT-mediated luminal fluid accumulation in vivo correlates with significant increases in IL-33 and IL-1Ra in small intestinal mucosal scrapings. Additionally, IL-33 receptor (IL-33R)-deficient mice are significantly less susceptible to ST-mediated secretion than wildtype mice. In the immune compartment, IL-33 is sensed by myeloid cells, and LT suppresses IL-33-induced tumor necrosis factor α (TNF-α) secretion from macrophages and bone marrow-derived dendritic cells (BMDCs) but amplifies IL-33-mediated induction of IL-6 from BMDCs. In conclusion, our studies suggest that enterotoxin-induced IL-33 and IL-1Ra modulate intestinal inflammation and IL-1 receptor signaling in the intestinal mucosa in response to ETEC enterotoxins.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Toxinas Bacterianas/metabolismo , Línea Celular , Citocinas/metabolismo , Enterotoxinas , Proteínas de Escherichia coli/metabolismo , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-33 , Ratones
2.
mBio ; 12(1)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653937

RESUMEN

The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.IMPORTANCE Extraintestinal pathologies caused by highly virulent strains of E. coli amount to clinical implications with high morbidity and mortality rates. Pathogenic E. coli strains are evolving with the horizontal acquisition of mobile genetic elements, including pathogenicity islands such as the pks island, which produces the genotoxin colibactin, resulting in severe clinical outcomes, including colorectal cancer progression. The current study encompasses high-throughput comparative genomics and phylogenetic analyses to address the questions pertaining to the acquisition and evolution pattern of the genomic island in different E. coli subtypes. It is crucial to gain insights into the distribution, transfer, and maintenance of pathogenic islands, as they harbor multiple virulence genes involved in pathogenesis and clinical implications of the infection.


Asunto(s)
Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/microbiología , Evolución Molecular , Genoma Bacteriano , Islas Genómicas , Genómica , Biología Computacional/métodos , ADN Intergénico , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/epidemiología , Estudio de Asociación del Genoma Completo , Fenotipo , Filogenia , Prevalencia , Virulencia/genética , Factores de Virulencia/genética
3.
mSphere ; 5(2)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238569

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies have identified heat-stable enterotoxin (ST)-producing ETEC as one of the major diarrhea-causing pathogens in children younger than five years. In this study, we examined iron and zinc binding by both human and porcine ST variants and determined how host metallothionein could detoxify ST. We found that ST purified from ETEC culture supernatants eluted as a doublet during C18 reverse-phase chromatography. Leading edge fractions of the ST doublet were found to be devoid of iron, while trailing edge fractions of the ST doublet were found to contain measurable iron. Next, we found that purified ST could be reconstituted with iron under reducing and anaerobic conditions, and iron-bound ST attenuated the induction of cGMP in T84 epithelial cells. Moreover, we demonstrated that supernatants of ETEC 214-4 grown under increasing iron concentrations were only able to induce cGMP at iron concentrations greater than 5 µM. In vitro studies also demonstrated that ST binds zinc, and once bound, zinc removal from ST required denaturing conditions. Zinc-bound ST also failed to induce cGMP. We found that ST contributes disulfide bonds to the perceived oxidized glutathione pool, increases the rate of zinc release from metallothionein, and can be detoxified by metallothionein. Lastly, we showed ST induces transcriptional changes in genes previously shown to be regulated by deferoxamine. These studies demonstrate ST ETEC pathogenesis may be tied intimately to host mucosal metal status.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries, deployed military personnel, and travelers to regions of endemicity. The heat-stable toxin (ST) is a small nonimmunogenic secreted peptide with 3 disulfide bonds. It has been appreciated that dietary disulfides modulate intestinal redox potential and that ST could be detoxified using exogenous reductants. Using biochemical and spectroscopic approaches, we demonstrated that ST can separately bind iron and zinc under reducing conditions, thereby reducing ST toxicity. Moreover, we demonstrated that ST modulates the glutathione (GSH)/oxidized glutathione (GSSG) ratio and that ST should be considered a toxin oxidant. ST can be detoxified by oxidizing zinc-loaded metallothionine, causing free zinc to be released. These studies help lay a foundation to understand how diarrheal pathogens modulate intestinal redox potential and may impact how we design therapeutics and/or vaccines for the pathogens that produce them.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Metalotioneína/metabolismo , Zinc/metabolismo , Animales , Línea Celular , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Glutatión/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos/metabolismo , Unión Proteica , Porcinos
4.
mBio ; 9(2)2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559578

RESUMEN

Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR), and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2) protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.IMPORTANCE Colorectal cancer is the third-most-common cause of cancer death. In addition to known risk factors such as high-fat diets and alcohol consumption, genotoxic intestinal Escherichia coli bacteria producing colibactin are proposed to play a role in colon cancer development. Here, by using transient infections with genotoxic E. coli, we showed that colibactins directly generate DNA cross-links in cellulo Such lesions are converted into double-strand breaks during the repair response. DNA cross-links, akin to those induced by metabolites of alcohol and high-fat diets and by widely used anticancer drugs, are both severely mutagenic and profoundly cytotoxic lesions. This finding of a direct induction of DNA cross-links by a bacterium should facilitate delineating the role of E. coli in colon cancer and engineering new anticancer agents.


Asunto(s)
Escherichia coli/metabolismo , Péptidos/metabolismo , Policétidos/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda