Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Microsc ; 294(2): 155-167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430066

RESUMEN

Super sulphated cement (SSC) is a very promising substitute for traditional construction materials (i.e. Portland cement), due to its enhanced durability and particularly low environmental impact. This paper explores the microstructure and certain properties of SSC, focusing on the particular complexities of its microstructure and the difficulties of microanalysis of its hydrates. To do so, SSC paste samples were first cast to identify hydration products using X-ray diffraction, then observed at early age using confocal laser scanning microscopy (CLSM) and at early and late age using scanning electron microscopy. In addition, concrete cores impregnated with fluorescein in order to highlight porosity, cracking and aggregates debonding were observed under UV light using optical microscopy (OM), showing a complete absence of cracking and aggregate debonding. Both microscopy techniques (CLSM and UV light OM) have been applied to this type of binder for the first time. The results show that SSC microstructure is characterised by a sophisticated intergrowth of various phases, including ettringite and amorphous calcium-(alumina)-silicate hydrate gels. Finally, Monte-Carlo simulation of electron-matter has been provided for a better understanding of EDS analysis.

2.
J Environ Manage ; 367: 121956, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083946

RESUMEN

Heavy metal pollution from industrial sources is a major environmental and health hazard on a global scale. This study introduces a solidification/stabilization method of industrial waste using a waste-based, ettringite-rich solid binder from ladle slag and gypsum for the immobilization of an industrial waste material with extremely high contents of several heavy metals. The importance of sulfate and water content on the immobilization efficiency and the use of citric acid to increase the processing time of the binder were studied. The leaching of Pb, Hg, Se, As, Cd, Cu, and Ni was measured, and X-ray powder diffraction, field-emission scanning electron microscopy, and field-emission electron probe microanalysis combined with wavelength-dispersive X-ray spectroscopy were used to analyze the structure of the hardened binder and the location of the heavy metals within. The study shows that the ladle slag/gypsum binder is suitable for the solidification/stabilization of heavy-metal-rich solid industrial waste. Hg, As, Cd, Cu, and Ni were fully immobilized in all scenarios covered in the study, whereas Pb and Se showed more complicated behaviors. The main immobilization method was encapsulation, and partial Se incorporation into ettringite was observed. The presence of citric acid increased the processing time of the binder without harming the immobilization, unless combined with low sulfate content.


Asunto(s)
Residuos Industriales , Metales Pesados , Metales Pesados/química , Residuos Industriales/análisis , Difracción de Rayos X
3.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985426

RESUMEN

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

4.
J Microsc ; 286(2): 168-173, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218226

RESUMEN

Samples were collected from a 20-year-old concrete suffering alkali-silica reaction for examination using scanning electron microscopy. The concrete was also exposed to cycles of freezing and thawing in service. The old concrete was processed and used as recycled concrete aggregate in new concrete tested under lab conditions. The study shows that backscattered electron imaging, energy dispersive x-ray analysis and x-ray mapping are helpful tools to identify the presence of alkali-silica reaction products. X-ray mapping was found helpful to confirm the presence of reaction products in cases where the products or the cracking are not very clear in the collected image. The study shows the presence of ettringite in the air voids of the concrete. The formed ettringite is believed to have no direct effect on the expansion due to the alkali-silica reaction as they form in an empty space without causing swelling pressure on the concrete. The effect of the ettringite formed in the air voids on the resistance to freezing/thawing was not confirmed in this study. Recycling the old affected concrete as aggregate in new concrete was found to cause significant expansion under lab conditions.

5.
J Appl Microbiol ; 131(2): 528-542, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33340219

RESUMEN

AIMS: To determine the effect of direct embedment of Bacillus megaterium into Portland pozzolana cement mortars on water sorptivity and diffusivity coefficient of sulphate ions. METHODS AND RESULTS: Prisms with a water/cement ratio of 0·5 were prepared by blending Portland Pozzolana cement with the requisite volume of a B. megaterium (microbial) solution whose concentration was 1·0 × 107 cells per ml. Mortar prisms of 160 mm × 40 mm × 40 mm were fabricated for this study. Mortars cured for 28 days were exposed to 0·2465 mol l-1 Na2 SO4 solution using accelerated ion migration test method for 36-h session using a 12V DC power source. Sulphate ion concentration was then determined through the ingressed mortar at 10 mm interval. A minimum water sorption gain of 0·61% was observed on the prism prepared with and cured in microbial solution. A maximum of 0·0289 and a minimum of 0·0093 water sorptivity coefficients were exhibited by the control prism and microbial prisms, respectively. The microbial prisms exhibited the lowest apparent diffusion coefficient (Dapp ) of 4·5179 × 10-11  m2  s-1 . CONCLUSIONS: Direct incorporation of B. megaterium in mortar preparation, curing or both regimes significantly retarded water sorption and lowered sulphate ion ingress. The inclusion of this bacterial in the mortar further complements the pozzolana pore structure benefits. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel B. megaterium bacteria which can survive and cause biocementation within hydrating cement mortar when not encapsulated would result in a green innovation. Once adopted and applied in real-life scenario, it would promote construction of durable, safe, resilient and affordable shelter.


Asunto(s)
Bacillus megaterium , Materiales de Construcción/microbiología , Sulfatos/química , Agua
6.
J Environ Manage ; 300: 113715, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34649326

RESUMEN

The proper treatment of lollingite is of great significance due to its rapid oxidation leading to release of arsenic into the environment. Herein, a green multi-solid waste geopolymer, consisting of red mud, metakaolin, blast furnace slag, and flue gas desulfurization gypsum, was developed. The obtained red mud-metakaolin-based (RMM) geopolymer demonstrated good arsenic retention capability. The results showed that the replacement of SO42- in ettringite with AsO42- via ion exchange, formation of Ca-As and Fe-As precipitates, and physical encapsulation with aluminosilicate gel were the main mechanisms that prevented the release of arsenic. Further dissolution of ettringite in RMM was alleviated by adding a suitable amount of Ca(OH)2 and controlling the pH of the leachate. TCLP results verified that RMM materials possessed an outstanding ability to stabilize arsenic, with a leaching rate below the permitted value of 5 mg/L for safe disposal. The low leachability of the RMM geopolymers (<0.50 mg/L) is potentially related to the pH buffering capacity of the hydration products at a pH range of 2-5. RMM geopolymers showed a high compressive strength (>15 MPa) and low arsenic leaching concentration (<2.66 mg/L) after 28 days of curing. These results demonstrate the potential of RMM geopolymers to be utilized as an environmentally friendly backfilling cementitious material for sustainable remediation of arsenic pollution.


Asunto(s)
Arsénico , Sulfato de Calcio , Residuos Industriales/análisis
7.
Molecules ; 26(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808306

RESUMEN

This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (Na2SO4, Na2CO3, and Na2SiO3) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved. Ettringite and AH3, are the majority hydration products, while monosulfates are absent in all of the samples. All three salts hasten CSA hydration and raise the amount of ettringite formed. Na2SO4 induces cracking in the ≥28-d pastes due to post-hardening gypsum and ettringite formation from the excess SO42- present. Anhydrite dissolves more rapidly in the presence of Na2CO3, prompting carbonation. Na2SiO3 raises compressive strength and exhibits strätlingite as one of its reaction products.

8.
Waste Manag Res ; 39(4): 528-545, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461442

RESUMEN

High sulfate concentrations in industrial effluents as well as solid materials (excavated soils, dredged sediments, etc.) are a major hindrance for circular economy outlooks. SO42- acceptability standards are indeed increasingly restrictive, given the potential outcomes for public health and ecosystems. This literature review deals with the treatment pathways relying on precipitation, adsorption and microbial redox principles. Although satisfactory removal performances can be achieved with each of them, significant yield differences are displayed throughout the bibliography. The challenge here was to identify the parameters leading to this variability and to assess their impact. The precipitation pathway is based on the formation of two main minerals (ettringite and barite). It can lead to total sulfate removal but can also be limited by aqueous wastes chemistry. Stabilizer kinetics of formation and equilibrium are highly constrained by background properties such as pH, Eh, SO42- saturation state and inhibiting metal occurrences. Regarding the adsorption route, sorbents' intrinsic features such as the qmax parameter govern removal yields. Concerning the microbial pathway, the chemical oxygen demand/SO42- ratio and the hydraulic retention time, which are classically evoked as yield variation factors, appear here to be weakly influential. The effect of these parameters seems to be overridden by the influence of electron donors, which constitute a first order factor of variability. A second order variability can be read according to the nature of these electron donors. Approaches using simple monomers (ethanol lactates, etc.) perform better than those using predominantly ligneous organic matter.


Asunto(s)
Suelo , Sulfatos , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Ecosistema
9.
Environ Res ; 187: 109693, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474311

RESUMEN

The sequential combination of nanofiltration (NF) and ettringite precipitation to manage sulfate-rich brine is proposed. In this study, NF experiments clearly demonstrated that sulfate-containing wastewater was effectively concentrated by the NF process (concentrate factor, CF > 5) with insignificant membrane fouling. Ettringite precipitation was implemented as an alternative to lime precipitation to process sulfate-rich brine resulting from the NF operation. More than 93% of the sulfate ions were removed by ettringite precipitation, whereas lime precipitation removed less than 28% under the same conditions due to the difference in their solubility. However, with highly concentrated NF brine (CF > 5), the pH and sulfate concentration of the supernatant were higher than the discharge limit. Therefore, optional blending of the supernatant after ettringite precipitation with the NF permeate was proposed to satisfy the discharge limit for sulfate. The sequential operation consisting of NF and ettringite precipitation enables sulfate-rich wastewater to be treated effectively, minimizing its negative impact by reducing the brine volume and enabling the water to be reused.


Asunto(s)
Sales (Química) , Purificación del Agua , Minerales , Sulfatos
10.
J Microsc ; 268(1): 84-93, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28556942

RESUMEN

Ettringite, Ca6 Al2 (SO4 )3 (OH)12 .26H2 O, or C6 AS¯3 H32 as it is known in cement chemistry notation, is a major phase of interest in cement science as an hydration product and in polluted soil treatment since its structure can accommodate with many hazardous cations. Beyond those anthropogenic features, ettringite is first of all a naturally occurring mineral (although rare). An example of its behaviour under the scanning electron microscope and during energy dispersive spectroscopy (EDS) qualitative analysis is presented, based on the study of natural ettringite crystals from the N'Chwaning mine in South Africa. Monte Carlo modelling of the electron-matter interaction zone at various voltages is presented and confronted with actual, observed beam damage on crystals, which burst at the analysis spot. Finally, theoretical energy dispersive spectroscopy spectra for all the ettringite group minerals have been computed as well as Monte Carlo modelling of the electron-matter interaction zone. The knowledge of the estimation of the size of this zone may thus be helpful for the understanding of energy dispersive spectroscopy analysis in cement pastes or ettringite-remediated soils.

11.
J Environ Manage ; 196: 518-526, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28347970

RESUMEN

One of the main challenges in industrial wastewater treatment and recovery is the removal of sulfate, which usually coexists with Ca2+ and Mg2+. The effect of Mg2+ on sulfate removal by ettringite precipitation was investigated, and the process was optimized in the absence and presence of Mg2+. In the absence of Mg2+, the optimum conditions with sulfate removal of 99.7% were obtained at calcium-to-sulfate ratio of 3.20, aluminum-to-sulfate ratio of 1.25 and pH of 11.3 using response surface methodology. In the presence of Mg2+, sulfate removal efficiency decreased with increasing Mg2+ concentration, and the inhibitory effect of Mg2+ matched the competitive inhibition Monod model with half maximum inhibition concentration of 57.4 mmol/L. X-ray diffraction and Fourier transform infrared spectroscopy analyses of precipitates revealed that ettringite was converted to hydrotalcite-type (HT) compound in the presence of Mg2+. The morphology of precipitates was transformed from prismatic crystals to stacked layered crystals, which confirmed that Mg2+ competes with Ca2+ for Al3+ to form HT compound. A two-stage process was designed with Mg2+ removal before ettringite precipitation to eliminate the inhibitory effect, and is potential to realize sludge recovery at the same time of effective removal of sulfate and hardness.


Asunto(s)
Magnesio , Sulfatos , Aguas Residuales , Precipitación Química , Concentración de Iones de Hidrógeno , Minerales , Difracción de Rayos X
12.
J Environ Manage ; 181: 856-862, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27397845

RESUMEN

The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal.


Asunto(s)
Arseniatos/aislamiento & purificación , Minerales/química , Sulfatos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Arseniatos/química , Precipitación Química , Microanálisis por Sonda Electrónica , Concentración de Iones de Hidrógeno , Minería , Espectrometría por Rayos X , Sulfatos/química , Contaminantes Químicos del Agua/química , Difracción de Rayos X
13.
J Environ Manage ; 151: 1-10, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25528268

RESUMEN

The aim of this study was to investigate the stability of As, Cr and Cu in contaminated soil treated with air pollution control residues under landfill conditions. The influence of landfill gas and temperature on the release of trace elements from stabilized soil was simulated using a diffusion test. The air pollution control residues immobilized As through the precipitation of Ca-As minerals (calcium arsenate (Ca5H2(AsO4)3 × 5H2O), weilite (CaAsO4) and johnbaumite (Ca5(AsO4)3(OH)), incorporation of As into ettringite (Ca6Al2(SO4)3(OH)12 × 26H2O) and adsorption by calcite (CaCO3). The air pollution control residues generally showed a high resistance to pH reduction, indicating high buffer capacity and stability of immobilized As in a landfill over time. Generation of heat in a landfill might increase the release of trace elements. The release of As from stabilized soil was diffusion-controlled at 60 °C, while surface wash-off, dissolution, and depletion prevailed at 20 °C. The air pollution control residues from the incineration of municipal solid waste immobilized Cr, indicating its stability in a landfill. The treatment of soil with air pollution control residues was not effective in immobilization of Cu. Contaminated soils treated with air pollution control residues will probably have a low impact on overall leachate quality from a landfill.


Asunto(s)
Contaminación del Aire/prevención & control , Metales Pesados/química , Suelo/química , Arsénico/química , Cromo/química , Cobre/química , Contaminación Ambiental , Humanos , Incineración , Eliminación de Residuos , Instalaciones de Eliminación de Residuos
14.
J Environ Manage ; 150: 103-110, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25438117

RESUMEN

The physicochemical properties of oyster shell-derived adsorbents prepared by calcination at different temperatures were characterized by elemental analysis, specific surface area, particle size distribution, X-ray diffraction, and scanning electron microscopy. The pH value in natural oyster shell increased from 9 to 12.7 following calcination above 750 °C. All of the oyster shell-derived adsorbents exhibited a BET surface area that ranged from 1.8 to 64.6 m(2)/g. Clearly, the proportion of particles within the ranges 25-50 µm and 50-100 µm increased after calcination, regardless of calcination temperature. The adsorption equilibrium and kinetics of cadmium (Cd) were investigated, and the mechanisms of sorption discussed. Experimental equilibrium data were fitted to a Langmuir adsorption isotherm model. Most Cd adsorption occurred during the initial hours of contact time, and a pseudo-second-order kinetic model best fitted the adsorption process. Cd sorption profiles indicated an initial, low Cd sorption region (25.25-32.36 mg/g) that was associated with calcination temperatures of up to 650 °C for 2 h, and a second region that contributed to high Cd sorption from 750 °C, with the maximum sorption capacity reaching a value of 1666.67 mg/g at 900 °C. The high Cd-removal capacity of oyster shell-derived adsorbents above 750 °C is attributed to their enhanced specific surface area, their material porosity, the bulk precipitation of Cd hydroxide and otavite on shell fragments, the formation of ettringite as a secondary precipitate, and ion exchange via Ca ions. This study highlights the effectiveness of calcined oyster shells in Cd removal from highly contaminated water and wastewater.


Asunto(s)
Cadmio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Animales , Humanos , Concentración de Iones de Hidrógeno , Ostreidae , Temperatura
15.
Heliyon ; 10(16): e36117, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247325

RESUMEN

Ettringite is an important mineral that contributes to the overall performance of cementitious materials. Knowledge of the surface charge behaviour of a solid is necessary for a mechanistic description of surface processes such as adsorption or particle-particle interactions. The objective of this study was to develop a model capable of reproducing ettringite surface charge as a function of calcium, sulphate, and pH. Ettringite was synthesised and characterised using different analytical, microscopic, and spectroscopic techniques with the help of density functional theory. Electrophoretic mobility was measured using laser Doppler electrophoresis in alkaline waters representative of the cementitious environment. The behaviour of the ettringite surface charge was shown to be quite complex as sulphate and calcium acted in a competitive manner on the overall charge. The ζ-potential increases when the calcium content increases, whereas it decreases when sulphate increases. This is due to the possible adsorption of these ions at the surface, and the extent of the effect depends on the relative concentrations of Ca and SO4 2-. An electrostatic double layer model (DLM) was used to calculate the surface potential, considering the adsorption of both calcium and sulphate, as possible ions determining the potential (IDP), and formation of different complexes with ettringite surface functional groups (SOH). The variations of the ζ-potential could be satisfactorily predicted under the different chemical conditions of interest in a cementitious environment.

16.
Materials (Basel) ; 17(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39063784

RESUMEN

In this study, the impact of the addition of high-aspect-ratio nano-ettringite to photocurable epoxy acrylate resin was explored. The nano-ettringite samples were modified using γ-Aminopropyltriethoxysilane (KH-550) and γ-methacryloxypropyl trimethoxy silane (KH-570). Then, 3 wt% or 6 wt% KH-550-modified, KH-570-modified, and unmodified nano-ettringite samples were dispersed into resin via ultrasonic treatment in conjunction with mechanical stirring. The grafting effects of nano-ettringite onto KH-550 or KH-570 were analyzed through scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric (TG) analysis. The results demonstrate that KH-550 and KH-570 have been successfully grafted onto the surface of nano-ettringite. In addition, this study also focuses on the variations of composite materials in the viscosity, shrinkage, tensile strength, and elongation at break. The results indicate that increased dosages of unmodified, KH-550-modified, and KH-570-modified nano-ettringite led to increased viscosity of the composite while reducing shrinkage. At the same dosage, the photocurable resin containing KH-570-modified nano-ettringite demonstrated a lower shrinkage and a higher tensile strength. From the analysis of tensile fracture surfaces, it was observed that compared to the KH-550 modified and unmodified variants, the KH-570 modified nano-ettringite exhibits superior dispersibility in photocurable epoxy acrylate resin. Notably, when the amount of KH-570-modified nano-ettringite was 3 wt%, the highest tensile strength of the composite was 64.61 MPa, representing a 72.57% increase compared to the blank sample. Furthermore, the incorporation of KH-570-modified nano-ettringite as a filler provides a new perspective for improving the performance of photocurable epoxy acrylate resin composites.

17.
Environ Pollut ; 341: 122859, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925007

RESUMEN

The solidification/stabilization of heavy metals and valuable component recovery from municipal solid waste incineration (MSWI) fly ash are of great significance for its safe disposal. In this study, MSWI fly ash was transformed into a new solid phase mainly composed of ettringite, achieving the solidification of excessive heavy metal Pb while obtaining a mixed solution of sodium chloride and potassium chloride with extremely low impurity content, which can be recovered by evaporation-crystallization respectively. The solidification mechanism of heavy metal Pb by ettringite was investigated through a combination of DFT calculations and experiments. The results indicate that a high conversion rate of calcium ions (99.68%), separation rate of chloride (95.99%), and conversion rate of heavy metal Pb (99.42%) can be achieved by controlling the ions ratio of the MSWI fly ash reaction system to n(Ca2+):n(Al3+):n(SO42-) = 6:2:3. DFT calculations show that the reaction pathway of the formation of a vacancy-Pb entering the vacancy at the Ca-2 site of ettringite is more likely to occur. The substitution of heavy metal Pb at the Ca-2 site leads to an increase in the unit cell volume, redistribution of charges, and a decrease in the thermal stability of the ettringite. The solidified body of ettringite presents a promising potential for application in cement-based materials due to its negligible risk of heavy metals leaching and low chloride content.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Residuos Sólidos , Cloruros , Sales (Química) , Plomo , Material Particulado , Carbono , Incineración , Metales Pesados/análisis
18.
Materials (Basel) ; 17(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203127

RESUMEN

Mixing cement with seawater will cause the hydration process of cement to be different from that of ordinary cement, which will significantly affect cement's mechanical properties and durability. This article investigates the effects of chloride ion concentration, curing temperature, and nano-metakaolin content on the evolution process of Friedel's salts and ettringite (AFt) crystals in cement pastes. The study was conducted using X-ray diffraction (XRD), thermal analysis (TG), scanning electron microscopy (SEM), and mercury-intrusion porosimetry (MIP). The results show that chlorine salt can increase the production of Friedel's salt and ettringite, and the delayed AFt production increases by up to 27.95% after the addition of chlorine salt, which has an adverse effect on cement-based materials. Increasing the curing temperature and increasing the nano-metakaolin dosage increased the generation of Friedel's salt and decreased the delayed AFt generation, which resulted in a decrease in the length and diameter of the AFt crystals. After 28 days of high-temperature curing and the addition of nano-metakaolin, Friedel's salt production increased by 13.40% and 14.34%, respectively, and ettringite production decreased by 9.68% and 7.93%, respectively. Increasing the curing temperature and adding nano-metakaolin can reduce the adverse effect of delayed ettringite increases due to chloride ion binding.

19.
Sci Total Environ ; 903: 166015, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579808

RESUMEN

The cementitious material based on phosphogypsum (PG) and ground granulated blast furnace slag (GBFS) demonstrates good economy and sustainability, whereas its drawback of ultra-slow strength development seems unacceptable. In this study, an attempt to drive the hydration of PG-GBFS and further facilitate the strength development by introducing nano-ettringite (NE) was carried out. The impact of 1- 5 % NE on the compressive strength, hydration process, dissolution behavior, and microstructure evolution of PG-GBFS were investigated. The results showed that the incorporation of NE significantly increased the compressive strength of PG-GBFS. At 7 d, the strength grew from 0 MPa to a range of 7.6- 20.2 MPa, and at 28 d, it was enhanced from 22.9 MPa to a range of 45.6- 79.0 MPa. The reason was that the introduction of NE induced the formation of AFt, thereby accelerating the hydration process and promoting the development of the skeletal network, resulting in higher early strength. Besides, NE facilitated the formation of C-S(A)-H gel, which further refined the pore structure and led to continuous growth in later strength. Additionally, PG-GFBS with 5 % NE exhibited significantly lower total costs (35.0 % of NaOH-activated slag and 51.7 % of water glass-activated slag) and lower carbon emissions (30.8 % of NaOH-activated slag and 49.8 % of water glass-activated slag) at the same 28 d compressive strength, indicating its strong competitiveness in both sustainability and economy.

20.
Materials (Basel) ; 16(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629938

RESUMEN

Despite having a high early mechanical strength and using sulfoaluminate cement as the primary cementitious material, self-compacting repair mortar (SCRM) suffers from rapid hydration rates leading to construction time constraints. This study examined how several forms of calcium sulfate, including hemihydrate gypsum, anhydrite, and dihydrate gypsum, affected SCRM's workability, hydration process, and microstructure. The outcomes demonstrated that adding hemihydrate gypsum sped up SCRM's early hydration rate and boosted its expansion rate. For a cement with 8% hemihydrate gypsum, 6 h after adding the water, the flexural strength and compressive strength increased by 39.02% and 34.08%, respectively. The hydration rate of SCRM can be efficiently delayed by dihydrate gypsum, although the result is subpar. The material exhibited the lowest fluidity loss in 20 min, the setting time was extended, and the 28-day flexural and compressive strengths were raised by 26.56% and 28.08%, respectively, after adding 8 percent anhydrite.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda