Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Microbiol ; 121(4): 619-635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37571814

RESUMEN

Apicomplexan parasites comprise significant pathogens of humans, livestock and wildlife, but also represent a diverse group of eukaryotes with interesting and unique cell biology. The study of cell biology in apicomplexan parasites is complicated by their small size, and historically this has required the application of cutting-edge microscopy techniques to investigate fundamental processes like mitosis or cell division in these organisms. Recently, a technique called expansion microscopy has been developed, which rather than increasing instrument resolution like most imaging modalities, physically expands a biological sample. In only a few years since its development, a derivative of expansion microscopy known as ultrastructure-expansion microscopy (U-ExM) has been widely adopted and proven extremely useful for studying cell biology of Apicomplexa. Here, we review the insights into apicomplexan cell biology that have been enabled through the use of U-ExM, with a specific focus on Plasmodium, Toxoplasma and Cryptosporidium. Further, we summarize emerging expansion microscopy modifications and modalities and forecast how these may influence the field of parasite cell biology in future.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Parásitos , Toxoplasma , Animales , Humanos , Microscopía , Mitosis
2.
J Cell Sci ; 135(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36524422

RESUMEN

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía , Proteínas de Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo
3.
J Cell Sci ; 134(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33589495

RESUMEN

Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Genoma Mitocondrial , Trypanosoma brucei brucei , ADN de Cinetoplasto/genética , Genoma Mitocondrial/genética , Mitocondrias , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
4.
ACS Nano ; 18(34): 23445-23456, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39143924

RESUMEN

Understanding cellular functions, particularly in their intricate complexity, can greatly benefit from the spatial mapping of diverse molecules through multitarget single-molecule localization microscopy (SMLM). Existing methodologies, primarily restricting the encoding dimensions to color and lifetime or requiring cyclic staining, often involve broad chromatic detection, specialized optical configurations, or sophisticated labeling techniques. Here, we propose a simple approach called buffer-exchange stochastic optical reconstruction microscopy (beSTORM), which introduces an additional dimension to differentiate between single molecules irrespective of their spectral properties. This method leverages the distinguishable photoblinking responses to distinct buffer conditions, offering a straightforward yet effective means of fluorophore discrimination. Through buffer exchanges, beSTORM achieves multitarget SMLM imaging with minimal crosstalk. Direct integration with expansion microscopy (ExM) demonstrates its capability to resolve up to six proteins at the molecular level within a single emission color without chromatic aberration. Overall, beSTORM presents a highly compatible imaging platform, promising significant advancements in highly multiplexed nanoscopy for exploring multiple targets in biological systems with nanoscale precision.


Asunto(s)
Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Tampones (Química) , Nanotecnología/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Microscopía/métodos
5.
Curr Biol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270640

RESUMEN

Controlling ciliary beating is essential for motility and signaling in eukaryotes. This process relies on the regulation of various axonemal proteins that assemble in stereotyped patterns onto individual microtubules of the ciliary structure. Additionally, each axonemal protein interacts exclusively with determined tubulin protofilaments of the neighboring microtubule to carry out its function. While it is known that tubulin post-translational modifications (PTMs) are important for proper ciliary motility, the mode and extent to which they contribute to these interactions remain poorly understood. Currently, the prevailing understanding is that PTMs can confer functional specialization at the level of individual microtubules. However, this paradigm falls short of explaining how the tubulin code can manage the complexity of the axonemal structure where functional interactions happen in defined patterns at the sub-microtubular scale. Here, we combine immuno-cryo-electron tomography (cryo-ET), expansion microscopy, and mutant analysis to show that, in motile cilia, tubulin glycylation and polyglutamylation form mutually exclusive protofilament-specific nanopatterns at a sub-microtubular scale. These nanopatterns are consistent with the distributions of axonemal dyneins and nexin-dynein regulatory complexes, respectively, and are indispensable for their regulation during ciliary beating. Our findings offer a new paradigm for understanding how different tubulin PTMs, such as glycylation, glutamylation, acetylation, tyrosination, and detyrosination, can coexist within the ciliary structure and specialize individual protofilaments for the regulation of diverse protein complexes. The identification of a ciliary tubulin nanocode by cryo-ET suggests the need for high-resolution studies to better understand the molecular role of PTMs in other cellular compartments beyond the cilium.

6.
MethodsX ; 9: 101796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36042811

RESUMEN

Expansion microscopy (ExM) is a microscopic imaging approach that can achieve super-resolution visualization of fluorescently labeled biological samples using conventional fluorescence microscopy. The method is based on embedding of a fluorescently labeled biological sample in a hydrogel matrix followed by the physical expansion of the specimen, which is then viewed using a conventional fluorescent microscope. Variations of the method can be used to visualize endogenously expressed fluorescent proteins, such as GFP, fluorescently tagged antibodies, nucleic acids, or other fluorescently tagged molecules. A significant challenge of the method is that the physical expansion of the specimen produces a concommitant reduction in fluorescence intensity, which can make imaging difficult. We describe an approach for amplifying fluorescence signal following expansion of immunolabeled tissue sections by applying fluorescently labeled Fab fragment secondary antibodies to intensify fluorescent signal and enhance detection of labeling using conventional fluorescent microscopy. A method to increase immunofluorescence signal intensity of Expansion Microscopy specimens is described. Method utilizes commercially available reagents. Enhances ability to acquire useful images in expanded tissue samples.

7.
FEBS Open Bio ; 12(12): 2102-2110, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36331359

RESUMEN

Recent studies have shown that mitochondrial morphology can modulate organelle function and greatly affect stem cell behavior, thus affecting tissue homeostasis. As such, we previously showed that the accumulation of fragmented mitochondria in aged Drosophila ovarian germline stem cells (GSCs) contributes to age-dependent GSC loss. However, standard immunofluorescence methods to examine mitochondrial morphology yield images with insufficient resolution for rigorous analysis, while 3-dimensional electron microscopy examination of mitochondrial morphology is labor intensive and allows only limited sampling of mitochondria. To overcome these issues, we utilized the expansion microscopy technique to expand GSC samples by 4-fold in combination with mitochondrial immunofluorescence labeling. Here, we present a simple, inexpensive method for nanoscale optical imaging of mitochondria in the germline. This protocol may be beneficial for studies that require visualization of mitochondria or other fine subcellular structures in the Drosophila ovary.


Asunto(s)
Proteínas de Drosophila , Células Madre Oogoniales , Animales , Femenino , Drosophila , Microscopía , Mitocondrias
8.
EJNMMI Res ; 12(1): 21, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35403982

RESUMEN

BACKGROUND: Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. RESULTS: For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). CONCLUSIONS: Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.

9.
Methods Mol Biol ; 2369: 121-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313987

RESUMEN

Ultrastructure expansion microscopy (U-ExM) is an emerging technique allowing the localization of proteins and cellular structures, at a level of resolution only distinguishable previously via immunoelectron microscopy. U-ExM, as its name indicates, is based on the physical expansion of the sample in the three dimensions without altering its internal features. The proteins of interest are later immunostained for their detection. To accelerate the discovery of gene function in the protozoan parasite Toxoplasma gondii, U-ExM can be coupled to the auxin-inducible degron system (mAiD system). This pipeline led to the subcellular localization of the gene product at unprecedented resolution and simultaneously assessed the consequences of conditional gene disruption. In this chapter, we explain the specific U-ExM protocol used for T. gondii tachyzoite samples and provide non-trivial advice and tips to successfully perform the experiments.


Asunto(s)
Toxoplasma , Ácidos Indolacéticos , Microscopía , Proteínas , Toxoplasma/genética
10.
Methods Cell Biol ; 161: 83-103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33478698

RESUMEN

Visualization of the spatial distribution of biomolecules with nanoscale precision is essential to understanding the molecular mechanisms of biological phenomena and diseases. Among several state-of-the-art visualization techniques, expansion microscopy (ExM) is an attractive tool, as it can achieve sub-20-nm resolution imaging of biological specimens, even with conventional diffraction-limited microscopy. This chapter first introduces the concept of ExM and its variants and then provides practical guidelines for implementing expansion microscopy and related techniques.


Asunto(s)
Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda