Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38879872

RESUMEN

Antiviral therapy is constantly challenged by the emergence of resistant pathogens. At the same time, experimental approaches to understand and predict resistance are limited by long periods required for evolutionary processes. Here, we present a herpes simplex virus 1 mutant with impaired proofreading capacity and consequently elevated mutation rates. Comparing this hypermutator to parental wild type virus, we study the evolution of antiviral drug resistance in vitro. We model resistance development and elucidate underlying genetic changes against three antiviral substances. Our analyzes reveal no principle difference in the evolutionary behavior of both viruses, adaptive processes are overall similar, however significantly accelerated for the hypermutator. We conclude that hypermutator viruses are useful for modeling adaptation to antiviral therapy. They offer the benefit of expedited adaptation without introducing apparent bias and can therefore serve as an accelerator to predict natural evolution.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Evolución Molecular , Herpesvirus Humano 1 , Farmacorresistencia Viral/genética , Antivirales/farmacología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/efectos de los fármacos , Mutación , Tasa de Mutación , Evolución Biológica , Humanos
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38586942

RESUMEN

When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.


Asunto(s)
Evolución Molecular , Receptores Virales , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , Unión Proteica
3.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489607

RESUMEN

Endolysins are produced by (bacterio)phages and play a crucial role in degrading the bacterial cell wall and the subsequent release of new phage progeny. These lytic enzymes exhibit a remarkable diversity, often occurring in a multimodular form that combines different catalytic and cell wall-binding domains, even in phages infecting the same species. Yet, our current understanding lacks insight into how environmental factors and ecological niches may have influenced the evolution of these enzymes. In this study, we focused on phages infecting Streptococcus thermophilus, as this bacterial species has a well-defined and narrow ecological niche, namely, dairy fermentation. Among the endolysins found in phages targeting this species, we observed limited diversity, with a singular structural type dominating in most of identified S. thermophilus phages. Within this prevailing endolysin type, we discovered a novel and highly conserved calcium-binding motif. This motif proved to be crucial for the stability and activity of the enzyme at elevated temperatures. Ultimately, we demonstrated its positive selection within the host's environmental conditions, particularly under the temperature profiles encountered in the production of yogurt, mozzarella, and hard cheeses that rely on S. thermophilus.


Asunto(s)
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Fermentación , Endopeptidasas
4.
Annu Rev Genet ; 51: 1-22, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28846455

RESUMEN

Present day mitochondria and plastids (chloroplasts) evolved from formerly free-living bacteria that were acquired through endosymbiosis more than a billion years ago. Conversion of the bacterial endosymbionts into cell organelles involved the massive translocation of genetic material from the organellar genomes to the nucleus. The development of transformation technologies for organellar genomes has made it possible to reconstruct this endosymbiotic gene transfer in laboratory experiments and study the mechanisms involved. Recently, the horizontal transfer of genetic information between organisms has also become amenable to experimental investigation. It led to the discovery of horizontal genome transfer as an asexual process generating new species and new combinations of nuclear and organellar genomes. This review describes experimental approaches towards studying endosymbiotic and horizontal gene transfer processes, discusses the new knowledge gained from these approaches about both the evolutionary significance of gene transfer and the underlying molecular mechanisms, and highlights exciting possibilities to exploit gene and genome transfer in biotechnology and synthetic biology.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma de Planta , Plantas/genética , Simbiosis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Especiación Genética , Genómica/métodos , Mitocondrias/genética , Mitocondrias/metabolismo , Células Vegetales/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(12): e2119010119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35298339

RESUMEN

Horizontal gene transfer (HGT) is important for microbial evolution, yet we know little about the fitness effects and dynamics of horizontally transferred genetic variants. In this study, we evolve laboratory populations of Helicobacter pylori, which take up DNA from their environment by natural transformation, and measure the fitness effects of thousands of transferred genetic variants. We find that natural transformation increases the rate of adaptation but comes at the cost of significant genetic load. We show that this cost is circumvented by recombination, which increases the efficiency of selection by decoupling deleterious and beneficial genetic variants. Our results show that adaptation with HGT, pervasive in natural microbial populations, is shaped by a combination of selection, recombination, and genetic drift not accounted for in existing models of evolution.


Asunto(s)
Transferencia de Gen Horizontal , Helicobacter pylori , Transferencia de Gen Horizontal/genética , Helicobacter pylori/genética
6.
Proc Natl Acad Sci U S A ; 119(12): e2114429119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286199

RESUMEN

SignificanceMitosis is an essential process in all eukaryotes, but paradoxically, genes required for mitosis vary among species. The essentiality of many mitotic genes was bypassed by activating alternative mechanisms during evolution. However, bypass events have rarely been recapitulated experimentally. Here, using the fission yeast Schizosaccharomyces pombe, the essentiality of a kinase (Plo1) required for bipolar spindle formation was bypassed by other mutations, many of which are associated with glucose metabolism. The Plo1 bypass by the reduction in glucose uptake was dependent on another kinase (casein kinase I), which potentiated spindle microtubule formation. This study illustrates a rare experimental bypass of essentiality for mitotic genes and provides insights into the molecular diversity of mitosis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo
7.
J Bacteriol ; 206(2): e0032923, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38289064

RESUMEN

Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.


Asunto(s)
Escherichia coli , Factor Tu de Elongación Peptídica , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Mutación , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Antecedentes Genéticos
8.
J Bacteriol ; : e0017824, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082861

RESUMEN

Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models. IMPORTANCE: Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.

9.
Ecol Lett ; 27(6): e14457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844349

RESUMEN

Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Escherichia coli , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiología , Pseudomonas fluorescens/genética , Escherichia coli/fisiología , Temperatura
10.
Ecol Lett ; 27(3): e14406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491734

RESUMEN

Rapid evolution in colonising populations can alter our ability to predict future range expansions. Recent theory suggests that the dynamics of replicate range expansions are less variable, and hence more predictable, with increased selection at the expanding range front. Here, we test whether selection from environmental gradients across space produces more consistent range expansion speeds, using the experimental evolution of replicate duckweed populations colonising landscapes with and without a temperature gradient. We found that the range expansion across a temperature gradient was slower on average, with range-front populations displaying higher population densities, and genetic signatures and trait changes consistent with directional selection. Despite this, we found that with a spatial gradient range expansion speed became more variable and less consistent among replicates over time. Our results therefore challenge current theory, highlighting that chance can still shape the genetic response to selection to influence our ability to predict range expansion speeds.


Asunto(s)
Evolución Biológica , Dinámica Poblacional , Temperatura , Densidad de Población , Fenotipo
11.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929911

RESUMEN

Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that the maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths toward higher fitness. To test this prediction, we submitted 1,344 populations derived from 7 mitonuclear genotypes of Saccharomyces cerevisiae to >300 generations of experimental evolution in conditions that either select for a mitochondrial function or do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.


Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , ADN Mitocondrial/genética , Mitocondrias/genética , Eucariontes/genética , Genotipo , Núcleo Celular/genética
12.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37186547

RESUMEN

During the emergence of new host-microbe symbioses, microbial fitness results from the ability to complete the different steps of symbiotic life cycles, where each step imposes specific selective pressures. However, the relative contribution of these different selective pressures to the adaptive trajectories of microbial symbionts is still poorly known. Here, we characterized the dynamics of phenotypic adaptation to a simplified symbiotic life cycle during the experimental evolution of a plant pathogenic bacterium into a legume symbiont. We observed that fast adaptation was predominantly explained by improved competitiveness for host entry, which outweighed adaptation to within-host proliferation. Whole-population sequencing of bacteria at regular time intervals along this evolution experiment revealed the continuous accumulation of new mutations (fuelled by a transient hypermutagenesis phase occurring at each cycle before host entry, a phenomenon described in previous work) and sequential sweeps of cohorts of mutations with similar temporal trajectories. The identification of adaptive mutations within the fixed mutational cohorts showed that several adaptive mutations can co-occur in the same cohort. Moreover, all adaptive mutations improved competitiveness for host entry, while only a subset of those also improved within-host proliferation. Computer simulations predict that this effect emerges from the presence of a strong selective bottleneck at host entry occurring before within-host proliferation and just after the hypermutagenesis phase in the rhizosphere. Together, these results show how selective bottlenecks can alter the relative influence of selective pressures acting during bacterial adaptation to multistep infection processes.


Asunto(s)
Fabaceae , Fabaceae/genética , Bacterias/genética , Adaptación Fisiológica , Mutación , Aclimatación , Simbiosis/genética
13.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37140066

RESUMEN

Evolution can be contingent on history, but we do not yet have a clear understanding of the processes and dynamics that govern contingency. Here, we performed the second phase of a two-phase evolution experiment to investigate features of contingency. The first phase of the experiment was based on Escherichia coli clones that had evolved at the stressful temperature of 42.2 °C. The Phase 1 lines generally evolved through two adaptive pathways: mutations of rpoB, which encodes the beta subunit of RNA polymerase, or through rho, a transcriptional terminator. We hypothesized that epistatic interactions within the two pathways constrained their future adaptative potential, thus affecting patterns of historical contingency. Using ten different E. coli Founders representing both adaptive pathways, we performed a second phase of evolution at 19.0 °C to investigate how prior genetic divergence or adaptive pathway (rpoB vs. rho) affects evolutionary outcomes. We found that phenotype, as measured by relative fitness, was contingent on founder genotypes and pathways. This finding extended to genotypes, because E. coli from different Phase 1 histories evolved by adaptive mutations in distinct sets of genes. Our results suggest that evolution depends critically on genetic history, likely due to idiosyncratic epistatic interactions within and between evolutionary modules.


Asunto(s)
Escherichia coli , Evolución Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Adaptación Fisiológica/genética , Fenotipo , Genotipo , Mutación , Antecedentes Genéticos , Epistasis Genética
14.
Mol Biol Evol ; 40(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37399035

RESUMEN

Phage therapy is a promising method for the treatment of multidrug-resistant bacterial infections. However, its long-term efficacy depends on understanding the evolutionary effects of the treatment. Current knowledge of such evolutionary effects is lacking, even in well-studied systems. We used the bacterium Escherichia coli C and its bacteriophage ΦX174, which infects cells using host lipopolysaccharide (LPS) molecules. We first generated 31 bacterial mutants resistant to ΦX174 infection. Based on the genes disrupted by these mutations, we predicted that these E. coli C mutants collectively produce eight unique LPS structures. We then developed a series of evolution experiments to select for ΦX174 mutants capable of infecting the resistant strains. During phage adaptation, we distinguished two types of phage resistance: one that was easily overcome by ΦX174 with few mutational steps ("easy" resistance) and one that was more difficult to overcome ("hard" resistance). We found that increasing the diversity of the host and phage populations could accelerate the adaptation of phage ΦX174 to overcome the hard resistance phenotype. From these experiments, we isolated 16 ΦX174 mutants that, together, can infect all 31 initially resistant E. coli C mutants. Upon determining the infectivity profiles of these 16 evolved phages, we uncovered 14 distinct profiles. Given that only eight profiles are anticipated if the LPS predictions are correct, our findings highlight that the current understanding of LPS biology is insufficient to accurately forecast the evolutionary outcomes of bacterial populations infected by phage.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Lipopolisacáridos/farmacología , Bacteriófagos/genética , Mutación , Fenotipo
15.
Microbiology (Reading) ; 170(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046321

RESUMEN

Bacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its Pseudomonad hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host-pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.


Asunto(s)
Bacteriófago phi 6 , Evolución Molecular , Bacteriófago phi 6/genética , Bacteriófago phi 6/fisiología , Virus ARN/genética , Interacciones Huésped-Patógeno , Replicación Viral , Mutación
16.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38426877

RESUMEN

When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Fibrosis Quística , Infecciones por Pseudomonas , Infecciones Estafilocócicas , Staphylococcus aureus , Sistemas de Transporte de Aminoácidos/genética , Biopelículas , Fibrosis Quística/complicaciones , Glutamatos/genética , Glutamatos/metabolismo , Glutamatos/farmacología , Mutación , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/genética
17.
Proc Biol Sci ; 291(2019): 20232564, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531400

RESUMEN

Phytoplankton are photosynthetic marine microbes that affect food webs, nutrient cycles and climate regulation. Their roles are determined by correlated phytoplankton functional traits including cell size, chlorophyll content and cellular composition. Here, we explore patterns of evolution in interrelated trait values and correlations. Because both chance events and natural selection contribute to phytoplankton trait evolution, we used population bottlenecks to diversify six genotypes of Thalassiosirid diatoms. We then evolved them as large populations in two environments. Interspecific variation and within-species evolution were visualized for nine traits and their correlations using reduced axes (a trait-scape). Our main findings are that shifts in trait values resulted in movement of evolving populations within the trait-scape in both environments, but were more frequent when large populations evolved in a novel environment. Which trait relationships evolved was population-specific, but greater departures from ancestral trait correlations were associated with lower population growth rates. There was no single master trait that could be used to understand multi-trait evolution. Instead, repeatable multi-trait evolution occurred along a major axis of variation defined by several diatom traits and trait relationships. Because trait-scapes capture changes in trait relationships and values together, they offer an insightful way to study multi-trait variation.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Fitoplancton/fisiología , Clorofila , Fotosíntesis , Cadena Alimentaria
18.
Proc Biol Sci ; 291(2025): 20240064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889780

RESUMEN

The role of spontaneous mutations in evolution depends on the distribution of their effects on fitness. Despite a general consensus that new mutations are deleterious on average, a handful of mutation accumulation experiments in diverse organisms instead suggest that beneficial and deleterious mutations can have comparable fitness impacts, i.e. the product of their respective rates and effects can be roughly equal. We currently lack a general framework for predicting when such a pattern will occur. One idea is that beneficial mutations will be more evident in genotypes that are not well adapted to the testing environment. We tested this prediction experimentally in the laboratory yeast Saccharomyces cerevisiae by allowing nine replicate populations to adapt to novel environments with complex sets of stressors. After >1000 asexual generations interspersed with 41 rounds of sexual reproduction, we assessed the mean effect of induced mutations on yeast growth in both the environment to which they had been adapting and the alternative novel environment. The mutations were deleterious on average, with the severity depending on the testing environment. However, we found no evidence that the adaptive match between genotype and environment is predictive of mutational fitness effects.


Asunto(s)
Aptitud Genética , Mutación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Adaptación Fisiológica , Genotipo , Ambiente
19.
Proc Biol Sci ; 291(2026): 20240804, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955230

RESUMEN

The evolution of nuptial gifts has traditionally been considered a harmonious affair, providing benefits to both mating partners. There is growing evidence, however, that receiving a nuptial gift can be actively detrimental to the female. In decorated crickets (Gryllodes sigillatus), males produce a gelatinous spermatophylax that enhances sperm transfer but provides little nutritional benefit and hinders female post-copulatory mate choice. Here, we examine the sexually antagonistic coevolution of the spermatophylax and the female feeding response to this gift in G. sigillatus maintained in experimental populations with either a male-biased or female-biased adult sex ratio. After 25 generations, males evolving in male-biased populations produced heavier spermatophylaxes with a more manipulative combination of free amino acids than those evolving in female-biased populations. Moreover, when the spermatophylax originated from the same selection regime, females evolving in male-biased populations always had shorter feeding durations than those evolving in female-biased populations, indicating the evolution of greater resistance. Across populations, female feeding duration increased with the mass and manipulative combination of free amino acids in the spermatophylax, suggesting sexually antagonistic coevolution. Collectively, our work demonstrates a key role for interlocus sexual conflict and sexually antagonistic coevolution in the mating system of G. sigillatus.


Asunto(s)
Conducta Alimentaria , Gryllidae , Conducta Sexual Animal , Animales , Gryllidae/fisiología , Masculino , Femenino , Coevolución Biológica , Evolución Biológica , Razón de Masculinidad
20.
IUBMB Life ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647201

RESUMEN

Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda