Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37549338

RESUMEN

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Asunto(s)
Resistencia a la Sequía , Suelo , Raíces de Plantas , Sequías , Productos Agrícolas
2.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38571383

RESUMEN

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Asunto(s)
Desinfectantes , Desinfección , Desinfección/métodos , Matriz Extracelular de Sustancias Poliméricas , Desinfectantes/farmacología , Cloro/farmacología , Cinética
3.
J Environ Manage ; 368: 122090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126848

RESUMEN

The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 µg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 µg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Salinidad , Aguas del Alcantarillado , Trimetoprim , Aguas del Alcantarillado/química , Adsorción , Trimetoprim/química , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química
4.
J Environ Manage ; 365: 121523, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901321

RESUMEN

Anaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a 'Candidatus Methanoperedens nitroreducens'-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of 'Ca. M. nitroreducens' for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Metano , Oxidación-Reducción , Metano/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anaerobiosis , Archaea/metabolismo
5.
J Environ Manage ; 350: 119623, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029496

RESUMEN

The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.


Asunto(s)
Aguas del Alcantarillado , Triptófano , Humanos , Fermentación , Aguas del Alcantarillado/química , Anaerobiosis , Triptófano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno
6.
J Environ Sci (China) ; 146: 55-66, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969462

RESUMEN

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.


Asunto(s)
Biopelículas , Hierro , Calidad del Agua , Abastecimiento de Agua , Corrosión , Microbiología del Agua , Agua Potable/microbiología , Agua Potable/química , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Trihalometanos/análisis
7.
Biochem Biophys Res Commun ; 684: 149138, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-37897909

RESUMEN

The formation of bacterial biofilms reduces the entry of antibiotics into bacteria and helps bacteria tolerate otherwise lethal concentrations of antimicrobials, leading to antibiotic resistance. Therefore, clearing bacterial biofilm is an effective strategy to tackle drug resistance. Currently, there are no approved antibiotics for inhibiting bacterial biofilm formation. We found that Ilicicolin B had excellent antibacterial activity against MRSA without obvious hemolytic activity. More importantly, Ilicicolin B effectively inhibited the biofilm formation in a concentration-dependent manner by crystal violet colorimetric assay and fluorescence microscopy analysis. Exposure of Staphylococcus aureus to Ilicicolin B for 24 h reduced the protein and polysaccharide components in EPS, suggesting that Ilicicolin B disintegrated the biofilms by dissociating the EPS in a matrix. In addition, Ilicicolin B demonstrated strong antibacterial effects in a murine abscess model of S. aureus. Our findings suggest that Ilicicolin B has the potential to treat S. aureus infection by inhibiting biofilm formation.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Biopelículas , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
8.
Crit Rev Microbiol ; 49(3): 370-390, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35584310

RESUMEN

Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.


Asunto(s)
Antiinfecciosos , Implantes Dentales , Humanos , Biopelículas , Matriz Extracelular , Matriz Extracelular de Sustancias Poliméricas
9.
Biofouling ; 39(7): 730-747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781891

RESUMEN

This study aimed to assess the influence of nutrient enrichment on the development of microalgal biofilm on concrete and PVC cubes. Three mesocosms were utilized to create a nutrient gradient over a period of 28 days. Various parameters including biomass, photosynthetic activity, microtopography, and extracellular polymeric substances (EPS) were measured. Imaging PAM techniques were employed to obtain surface-wide data. Results revealed that nutrient availability had no significant impact on Chl a biomass and the maximum quantum efficiency of PSII (Fv/Fm). The photosynthetic capacity and efficiency were minimally affected by nutrient availability. Interestingly, the relationship between microphytobenthic (MPB) biomass and photosynthesis and surface rugosity exhibited distinct patterns. Negative reliefs showed a strong correlation with Fv/Fm, while no clear pattern emerged for biomass on rough concrete structures. Overall, our findings demonstrate that under conditions of heightened eutrophication, biofilm photosynthesis thrives in the fissures and crevasses of colonized structures regardless of nutrient levels. This investigation provides valuable insights into the interplay between nutrient availability and surface rugosity.


Asunto(s)
Biopelículas , Microalgas , Fotosíntesis , Biomasa
10.
Ecotoxicol Environ Saf ; 257: 114958, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116453

RESUMEN

Cadmium (Cd) accumulation in crops causes potential risks to human health. Microbial extracellular polymeric substances (EPS) are a complex mixture of biopolymers that can bind various heavy metals. The present work examined the alleviating effects of EPS on Cd toxicity in rice and its detoxification mechanism. The 100 µM Cd stress hampered the overall plant growth and development, damaged the ultrastructures of both leaf and root cells, and caused severe lipid peroxidation in rice plants. However, applying EPS at a concentration of 100 mg/L during Cd stress resulted in increased biomass, reduced Cd accumulation and transport, and minimized the oxidative damage. EPS application also enhanced Cd retention in the shoot cell walls and root vacuoles, and actively altered the expression of genes involved in cell wall formation, antioxidant defense systems, transcription factors, and hormone metabolism. These findings provide new insights into EPS-mediated mitigation of Cd stress in plants and help us to develop strategies to improve crop yield in Cd-contaminated soils in the future.


Asunto(s)
Oryza , Contaminantes del Suelo , Humanos , Cadmio/metabolismo , Oryza/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo/genética , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo
11.
J Environ Manage ; 348: 119226, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820429

RESUMEN

This study investigated the influence of nitrate on aerobic granular sludge (AGS) granulation. The introduction of nitrate at 5, 15 and 20 mg L-1 promoted AGS granulation, and the promoting effect was positively correlated with nitrate concentrations. Meanwhile, exogenous nitrate significantly increased denitrification rate in the AGS system. However, granular disintegration appeared at a long-term addition of nitrate. An in-deep analysis showed that nitrate stimulated the secretion of extracellular polymeric substances (EPS), especially the content of proteins, which might be the main reason for the AGS granulation. However, the rapid and excessive increase in EPS might cause granular disintegration, as excessive EPS blocked the transmission of substrates, leading to the increase of dead cells in the granules. Besides, nitrate also altered the hydrophobicity of EPS and the content of α-helix, 3-turned helix and polymeric chain that favored aggregation, which also affected AGS granulation. From the microbial community level, nitrate induced the enrichment of denitrifying bacteria, including those that also functioned as EPS producers, such as Micropruina and Flavobacterium, resulting in the rapid increase of functional enzymes associated with amino acid synthesis, thereby promoting the secretion of proteins in EPS. Conversely, disintegration caused by mass transfer blockage might lead to the loss of EPS producing bacteria and subsequent decrease in EPS content, further accelerating granular disintegration.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Matriz Extracelular de Sustancias Poliméricas/química , Nitratos/análisis , Eliminación de Residuos Líquidos/métodos , Aerobiosis , Reactores Biológicos/microbiología , Bacterias/metabolismo
12.
J Environ Manage ; 332: 117371, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36739770

RESUMEN

Alleviating bacterial-induced clogging is of great importance to improve the efficiency of managed aquifer recharge (MAR). Enzymes (lysozyme and alkaline protease) and sodium hypochlorite (NaClO) are common biological and chemical reagents for inhibiting bacterial growth and activity. To investigate the applicability of these reagents to reduce bioclogging, percolation experiments were performed to simulate a weak alkaline recharge water infiltration through laboratory-scale sand columns, with adding 10 mg/L lysozyme, alkaline protease, and NaClO, respectively. The results showed that, with the addition of lysozyme, alkaline protease, and NaClO, the average clogging rates (the reduced percentages of relative saturated hydraulic conductivity of the sand columns per hour during the percolation experiments) were 0.53%/h, 0.32%/h and 0.06%/h, respectively, which were much lower than that in the control group (0.99%/h). This implied that bioclogging could be alleviated to some extent following the treatments. For further analyzing the mechanisms of the regents on alleviating bioclogging, the bacterial cell amount and extracellular polymeric substances (EPS) concentration were also measured to study the effects of lysozyme, alkaline protease, and NaClO on bacterial growth and EPS secretion. Lysozyme and alkaline protease could disintegrate bacterial EPS by hydrolyzing polysaccharides and proteins, respectively, while they had little effect on the bacterial cell amount. The addition of NaClO significantly decreased the bacterial cell amount (P < 0.05) and thus greatly alleviated bioclogging. Although the lowest average clogging rate was achieved in the NaClO group, it can generate disinfection by-products that are potentially harmful to the environment and human health. Therefore, the biological-based method, i.e., enzyme treatment, could be a promising option for bioclogging control. Our results provide insights for understanding the mechanisms of lysozyme, alkaline protease, and NaClO to alleviate bioclogging, which is of great importance for addressing the clogging problem during MAR activities and achieving groundwater resources sustainable utilization.


Asunto(s)
Agua Subterránea , Hipoclorito de Sodio , Humanos , Muramidasa , Arena , Bacterias , Agua Subterránea/química
13.
J Environ Manage ; 329: 117098, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563444

RESUMEN

The growing demand for rare earth elements (REEs) increasingly requires secondary resources such as mine wastewater containing high concentrations of REEs, to be used as a source of REEs. The current challenge is how to efficiently recover REEs from this feed source. In this paper, a functional bionanomaterial (FeNPs-EPS) was biosynthesized using Bacillus cereus as a possible means of recovering REEs. This composite was composed of both synthesized iron nanoparticles (FeNPs) and extracellular polymeric substances (EPS). Synthesis of the FeNPs-EPS composite via a one-step biosynthesis was confirmed by materials characterization. The peak in the material's UV-Vis spectra at 511 nm demonstrates the formation of FeNPs-EPS, where 3D-EEM showed that FeNPs-EPS was wrapped predominantly with tryptophan protein-like and humic acid-like substances. In addition, while FTIR indicated that the functional groups present in EPS where virtually identical to those observed in FeNPs-EPS, XPS demonstrated that Fe and O were the major elemental present as both FeO and Fe2O3. Zeta potential measurements indicated that FeNPs-EPS had good stability under different pH conditions, where BET analysis supported multilayer adsorption. Finally, on exposure to high concentrations of Eu(III) and Tb(III) in mine wastewater, the synthesized FeNPs-EPS demonstrated strong potential to remove two cations from the wastewater and hence a potentially practical way to efficiently recover REEs from such waste streams.


Asunto(s)
Metales de Tierras Raras , Aguas Residuales , Bacillus cereus , Metales de Tierras Raras/análisis , Hierro/análisis , Cationes
14.
J Environ Manage ; 347: 119047, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778070

RESUMEN

As a highly promising treatment technology for wastewater, long start-up time is one of the bottlenecks hindering the widespread application of aerobic granular sludge (AGS). This study focused on exploring the possibility of alternating organic loading rate (OLR) in promoting AGS granulation. Under alternating OLR (3.6-14.4 kgCOD/m3·d), AGS granulation was significantly accelerated. The mean granule size under alternating load reached 234.6 µm at 17 d, while under constant OLR (7.2 kgCOD/m3·d), the mean granule size was only 179.2 µm. Moreover, the granule size maintained continuous growth even when the alternating OLR was changed to constant OLR. Alternating load significantly increased the content of extracellular polymeric substances (EPS), especially proteins (PN) in tightly bound EPS (TB-EPS), which was likely the main reason for accelerating AGS granulation. Moreover, alternating load reduced the hydrophilicity of EPS and promoted the content of proteins secondary structures that favored aggregation in TB-EPS, which were also beneficial for granulation. Microbial community results showed that alternating load might promote the enrichment of EPS producing bacteria, such as Thauera, Brevundimonas and Shinella. Meanwhile, the content of enzymes that regulated amino acids metabolism also increased under alternating load, which might be related to the increase of PN in EPS. These results further demonstrated that alternating load promoted granulation through EPS.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas Residuales , Aerobiosis , Aceleración , Eliminación de Residuos Líquidos/métodos
15.
J Environ Manage ; 348: 119323, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852083

RESUMEN

Iron nanoparticles (FeNPs) are commonly used in various industrial processes, leading to their release into the environment and eventual entrance into wastewater treatment plants (WWTPs). FeNPs undergo dissolution, migration, and transformation in WWTPs, which can potentially affect the stable operation of anaerobic ammonia oxidation (anammox) systems and may be discharged with wastewater or biomass. To better understand the fate of FeNPs in anammox systems, exposure experiments were conducted using anammox granular sludges (AnGS) and FeNPs. Results demonstrated that FeNPs released Fe2+ upon contact with water, with a portion being bound to functional groups in extracellular polymeric substances (EPS) and the rest entering the bacteria to form highly absorbable substances. A significant amount of FeNPs was observed to cover the surface of AnGS or aggregate and deposit at the bottom of the reactor, eventually converting into Fe3O4 and stably existing within the anammox system. The findings of this study clarify the fate of FeNPs in anammox systems and provide important insights into the stable operation of anammox systems under FeNPs exposure.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Reactores Biológicos/microbiología , Hierro , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
16.
J Environ Manage ; 332: 117427, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738723

RESUMEN

To remove residual nitrate from anammox process and achieve efficient nitrogen removal, a two-stage system (TAS) with the two individual reactors and a one-stage system (OAS) with the spatial functional areas in one reactor were established via anammox coupling sulfur autotrophic denitrification. The total nitrogen removal efficiency (TNRE) of OAS system (97.85 ± 1.92%) was higher than that of TAS system (93.63 ± 1.87%) under the influent NH4+-N and NO2--N of 227 and 300 mg/L. Meanwhile, the responses of microbial metabolism to high nitrogen load were investigated in term of microbial metabolites, electron transfer and metabolic activity. Microbial metabolites characteristics demonstrated that the OAS system secreted more EPS with lower protein (PN)/polysaccharide (PS) ratio than that in the TAS system, which was beneficial to protect bacteria from high nitrogen load. Electrochemical analysis suggested that the secretion of electron conductive substance (such as PN, PS) and redox active substances (such as flavin mononucleotide, the binding of flavins and cytochrome c on the outer membrane) were increased in the OAS system, which promoted the electron transfer efficiency. Moreover, the electron transport system activity (ETSA) values and ATP contents in OAS system were higher than that in the TAS system, which indicated that metabolic activity was improved in OAS system under the stimulation of high nitrogen load. Additionally, the bacterial community analysis indicated that the functional bacteria of Candidatus_Kuenenia and Armatimonadetes_gp5 had higher abundance in the OAS system than that in the TAS system, which was beneficial to realize the stable nitrogen removal performance. Overall, the responses mechanism of the OAS system was established to explain the resistant to high nitrogen load.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/análisis , Oxidación Anaeróbica del Amoníaco , Bacterias/metabolismo , Oxidación-Reducción , Azufre , Reactores Biológicos
17.
J Environ Manage ; 334: 117527, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801798

RESUMEN

Nowadays, the shift toward energy and resource-efficient wastewater treatment plants (WWTPs) has become a necessity rather than a choice. For this purpose, there has been a restored interest in replacing the typical energy and resource-extensive activated sludge process with the two-stage Adsorption/bio-oxidation (A/B) configuration. In the A/B configuration, the role of the A-stage process is to maximize organics diversion to the solids stream and control the following B-stage's influent to allow for the attainment of tangible energy savings. Operating at very short retention times and high loading rates, the influence of the operational conditions on the A-stage process become more tangible than typical activated sludge. Nonetheless, there is very limited understanding of the influence of operational parameters on the A-stage process. Moreover, no studies in the literature have explored the influence of any operational/design parameters on the Alternating Activated Adsorption (AAA) technology which is a novel A-stage variant. Hence, this article mechanistically investigates the independent effect of different operational parameters on the AAA technology. It was inferred that solids retention time (SRT) shall remain below 1 day to allow for energy savings up to 45% and redirecting up to 46% of the influent's COD to the recovery streams. In the meantime, the hydraulic retention time (HRT) can be increased up to 4 h to remove up to 75% of the influent's COD with only 19% decline of the system's COD redirection ability. Moreover, it was observed that the high biomass concentration (above 3000 mg/L) amplified the effect of the sludge poor settleability either due to pin floc settling or high SVI30 which resulted in COD removal below 60%. Meanwhile, the concentration of the extracellular polymeric substances (EPS) was not found to be influenced or to influence process performance. The findings of this study can be employed to formulate an integrative operational approach in which different operational parameters are incorporated to better control the A-stage process and achieve complex objectives.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Carbono , Reactores Biológicos , Adsorción
18.
J Environ Sci (China) ; 130: 187-196, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032035

RESUMEN

Extracellular polymeric substances (EPS) are an important medium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron (oxyhydr) oxides production which reduced arsenic (As) availability. The main component of EPS secreted by iron-oxidizing bacteria (Ochrobactrum EEELCW01) was composed of polysaccharides (150.76-165.33 mg/g DW) followed by considerably smaller amounts of proteins (12.98-16.12 mg/g DW). Low concentrations of As (100 or 500 µmol/L) promoted the amount of EPS secretion. FTIR results showed that EPS was composed of polysaccharides, proteins, and a miniscule amount of nucleic acids. The functional groups including -COOH, -OH, -NH, -C=O, and -C-O played an important role in the adsorption of As. XPS results showed that As was bound to EPS in the form of As3+. With increasing As concentration, the proportion of As3+ adsorbed on EPS increased. Ferrihydrite with a weak crystalline state was only produced in the system at 6 hr during the mineralization process of Ochrobactrum sp. At day 8, the minerals were composed of goethite, galena, and siderite. With the increasing mineralization time, the main mineral phases were transformed from weakly crystalline hydrous iron ore into higher crystallinity siderite (FeCO3) or goethite (α-FeOOH), and the specific surface area and active sites of minerals were reduced. It can be seen from the distribution of As elements that As is preferentially adsorbed on the edges of iron minerals. This study is potential to understand the biomineralization mechanism of iron-oxidizing bacteria and As remediation in the environment.


Asunto(s)
Arsénico , Arsénico/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Compuestos Férricos/química , Minerales/química , Hierro , Polisacáridos , Bacterias/metabolismo , Oxidación-Reducción
19.
Environ Sci Technol ; 56(20): 14763-14773, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36197031

RESUMEN

Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Ultrafiltración , Adsorción , Concentración de Iones de Hidrógeno , Resonancia por Plasmón de Superficie
20.
J Appl Microbiol ; 132(5): 3490-3514, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35061929

RESUMEN

Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Microalgas , Biopelículas , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Microalgas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda