Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Saudi Pharm J ; 30(7): 934-945, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903524

RESUMEN

Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.

2.
Saudi Pharm J ; 29(1): 73-84, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33603542

RESUMEN

BACKGROUND: Phytoestrogens are polyphenolic plant compounds which are structurally similar to the endogenous mammalian estrogen, 17ß-estradiol. Annexin A1 (ANXA1) is an endogenous protein which inhibits cyclo-oxygenase 2 (COX-2) and phospholipase A2, signal transduction, DNA replication, cell transformation, and mediation of apoptosis. OBJECTIVE: This study aimed to determine the effects of selected phytoestrogens on annexin A1 (ANXA1) expression, mode of cell death and cell cycle arrest in different human leukemic cell lines. METHODS: Cells viability were examined by MTT assay and ANXA1 quantification via Enzyme-linked Immunosorbent Assay. Cell cycle and apoptosis were examined by flow cytometer and phagocytosis effect was evaluated using haematoxylin-eosin staining. RESULTS: Coumestrol significantly (p < 0.05) reduced the total level of ANXA1 in both K562 and U937 cells and genistein significantly (p < 0.05) reduced it in K562, Jurkat and U937 cells, meanwhile estradiol and daidzein induced similar reduction in U937 and Jurkat cells. Coumestrol and daidzein induced apoptosis in K562 and Jurkat cells, while genistein and estradiol induced apoptosis in all tested cells. Coumestrol and estradiol induced cell cycle arrest at G2/M phase in K562 and Jurkat cells with an addition of U937 cells for estradiol. Genistein induced cell cycle arrest at S phase for both K562 and Jurkat cells. However, daidzein induced cell cycle arrest at G0/G1 phase in K562, and G2/M phase of Jurkat cells. Coumestrol, genistein and estradiol induced phagocytosis in all tested cells but daidzein induced significant (p < 0.05) phagocytosis in K562 and Jurkat cells only. CONCLUSION: The selected phytoestrogens induced cell cycle arrest, apoptosis and phagocytosis and at the same time they reduced ANXA1 level in the tested cells. The IC50 value of phytoestrogens was undetectable at the concentrations tested, their ability to induce leukemic cells death may be related with their ability to reduce the levels of ANXA1. These findings can be used as a new approach in cancer treatment particularly in leukemia.

3.
Saudi Pharm J ; 29(5): 361-368, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34135662

RESUMEN

Commiphora myrrha (Nees) Engl. (C. myrrha) resin is the most Middle Eastern herbal medicine used against numerous diseases. After being decocted or macerated, this resin is widely consumed among Saudi Arabian patients who are already under prescribed medication. Despite its popularity, no studies have been reported on potential modulation effects of these resin extracts on drug metabolism. Therefore, we studied C. myrrha resin extracts on the expression of cytochrome P450 (CYP) drug-metabolizing isoenzyme in human hepatocellular carcinoma cell line HepG2. The C. myrrha extracts were prepared by sonication and boiling, resembling the most popular traditional preparations of maceration and decoction, respectively. Both boiled and sonicated aqueous extracts were fingerprinted using high-performance liquid chromatography equipped with ultra-violet detector (HPLC-UVD). The viability of HepG2 cells treated with these aqueous extracts was determined using CellTiter-Glo® assay in order to select the efficient and non-toxic resin extract concentrations for phase-I metabolic CYP isoenzyme expression analysis. The isoenzyme gene and protein expression levels of CYP 2C8, 2C9, 2C19, and 3A4 were assessed using reverse transcription-quantitative polymerase chain reaction and Western blot technologies. The HPLC-UVD fingerprinting revealed different chromatograms for C. myrrha boiled and sonicated aqueous extracts. Both aqueous extracts were toxic to HepG2 cells when tested at concentrations exceeding 150 µg/ml of the dry crude extract. The CYP 2C8, 2C9, and 2C19 mRNA expression levels increased up to 4.0-fold in HepG2 cells treated with either boiled or sonicated C. myrrha aqueous extracts tested between 1 and 30 µg/ml, as compared with the untreated cells. However, CYP3A4 mRNA expression level exceeded the 2.0-fold cutoff when the cells were exposed to 30 µg/ml of C. myrrha extracts. The up-regulation of CYP mRNA expression levels induced by both boiled and sonicated C. myrrha aqueous extracts was confirmed at the CYP protein expression levels. In conclusion, both sonicated and boiled C. myrrha aqueous extracts modulate CYP 2C8, 2C9, 2C19, and 3A4 gene expression at clinically-relevant concentrations regardless of preparation methods. Further in vitro and in vivo experiments are required for CYP isoenzyme activity assessment and the establishment of herb-drug interaction profile for these traditional medicinal resin extracts.

4.
Saudi Pharm J ; 29(12): 1405-1415, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35002378

RESUMEN

Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/ß-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and ß-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/ß-catenin pathways.

5.
Saudi Pharm J ; 29(8): 857-873, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34408546

RESUMEN

BACKGROUND: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). METHODS: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. RESULTS: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. CONCLUSION: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.

6.
Biosci Biotechnol Biochem ; 82(4): 689-697, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29165050

RESUMEN

The genus Bifidobacterium is well known to have beneficial health effects. We discovered that quercetin and related polyphenols enhanced the secretion of anti-inflammatory substances by Bifidobacterium adolescentis. This study investigated characteristics of the anti-inflammatory substances secreted by B. adolescentis. The culture supernatant of B. adolescentis with quercetin reduced the levels of inflammatory mediators in activated macrophages. Spontaneous quercetin degradant failed to increase anti-inflammatory activity, while the enhancement of anti-inflammatory activity by quercetin was sustained after washout of quercetin. Physicochemical treatment of the culture supernatant indicated that its bioactive substances may be heat-stable, non-phenolic, and acidic biomolecules with molecular weights less than 3 kDa. Acetate and lactate have little or no effect on nitric oxide production. Taken together, the anti-inflammatory substances secreted by B. adolescentis may be small molecules but not short chain fatty acids. In agreement with these findings, stearic acid was tentatively identified as a bioactive candidate compound.


Asunto(s)
Antiinflamatorios/farmacología , Bifidobacterium adolescentis/efectos de los fármacos , Alimentos Funcionales , Quercetina/farmacología , Acetatos/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Bifidobacterium adolescentis/metabolismo , Western Blotting , Línea Celular , Cromatografía Liquida , Medios de Cultivo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Lactatos/metabolismo , Lipopolisacáridos/farmacología , Espectrometría de Masas , Ratones , Peso Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Ácidos Esteáricos/farmacología
7.
Biosci Biotechnol Biochem ; 82(4): 732-739, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29297259

RESUMEN

Immunoglobulin E (IgE) is involved in the onset of allergic reaction, and the suppression of IgE production leads to alleviation of allergic symptoms. We found that mango peel ethanol extract (MPE) significantly suppresses IgE production by human myeloma cell line U266 cells, suggesting that MPE has an anti-allergic effect by inhibiting the production of IgE. Although mangiferin is contained in mango, which suppresses IgE production by U266 cells, it was not contained in MPE. We investigated the suppressive effect of MPE in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis model mice. The elevation of serum IgE level was significantly suppressed by oral administration of MPE. Intake of MPE also suppressed the expression level of IL-4 in the DNFB-challenged ears, suggesting that MPE suppresses the IL-4-mediated maturation into IgE-producing cells. Our findings indicate that MPE has a potential to alleviate the increase in serum IgE level that is feature of type I allergy.


Asunto(s)
Etanol/química , Inmunoglobulina E/biosíntesis , Mangifera/química , Extractos Vegetales/farmacología , Animales , Línea Celular Tumoral , Dermatitis Alérgica por Contacto/inmunología , Dinitrobencenos/toxicidad , Modelos Animales de Enfermedad , Oído , Expresión Génica/efectos de los fármacos , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/sangre , Inmunoglobulina E/genética , Interleucina-4/genética , Ratones Endogámicos BALB C
8.
Biosci Biotechnol Biochem ; 82(4): 654-668, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29207919

RESUMEN

Certain food components possess immunomodulatory effects. The aim of this study was to elucidate the mechanism of the immunostimulatory activity of Brassica rapa L. We demonstrated an enhancement of natural killer (NK) activity and interferon (IFN)-γ production in mice that were orally administered an insoluble fraction of B. rapa L. The insoluble fraction of B. rapa L. significantly induced IFN-γ production in mouse spleen cells in an interleukin (IL)-12-dependent manner, and NK1.1+ cells were the main cells responsible for producing IFN-γ. Additionally, the results suggested that the active compounds in the insoluble fraction were recognized by Toll-like receptor (TLR) 2, TLR4, and C-type lectin receptors on dendritic cells, and they activated signaling cascades such as MAPK, NF-κB, and Syk. These findings suggest that B. rapa L. is a potentially promising immuno-improving material, and it might be useful for preventing immunological disorders such as infections and cancers by activating innate immunity.


Asunto(s)
Brassica rapa/metabolismo , Alimentos Funcionales , Interferón gamma/biosíntesis , Interleucina-12/fisiología , Células Asesinas Naturales/efectos de los fármacos , Extractos Vegetales/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Oral , Animales , Citocinas/metabolismo , Femenino , Células Asesinas Naturales/inmunología , Lectinas Tipo C/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/administración & dosificación , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/metabolismo , Quinasa Syk/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
9.
Biosci Biotechnol Biochem ; 82(5): 800-809, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29452534

RESUMEN

Dry eye syndrome (DES) is considered as an ocular surface inflammatory disease. Previous studies have shown inflammation plays an important role in the progression and onset of DES. Co-culture of human bone marrow mesenchymal stem cells (HBMSCs) and macrophages showed immunomodulatory effects via regulation of cytokine regulation. Thus, the aim of this study was to investigate the effect of the interaction of these cells on in vitro DES model. The conditioned media (CM) from macrophages, HBMSCs, and HBMSCs + macrophages were treated to human corneal epithelial cells, which showed significant reduction in IL-1α and IL-1ß expression levels in HBMSCs + macrophages group. Moreover, the IL-1 Receptor Antagonist (IL-1RA) was highly expressed in the CM from the HBMSCs + macrophages group. Wounded eyes of mice were treated with IL-1RA at 0-100 ng/mL for 16 h, the wound size was reduced. The results of this study might lead to the identification of new therapeutic targets for DES.


Asunto(s)
Células de la Médula Ósea/citología , Epitelio Corneal/efectos de los fármacos , Inflamación/prevención & control , Lipopolisacáridos/farmacología , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cromatografía en Gel , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Epitelio Corneal/patología , Humanos , Inflamación/inducido químicamente , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Espectrometría de Masas en Tándem , Acetato de Tetradecanoilforbol/farmacología , Cicatrización de Heridas/efectos de los fármacos
10.
Biosci Biotechnol Biochem ; 82(8): 1344-1358, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29629628

RESUMEN

This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in H2O2-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against H2O2-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca2+ levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the H2O2-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by H2O2. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.


Asunto(s)
Hipocampo/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Perilla frutescens/química , Polisacáridos/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Caspasas/metabolismo , Línea Celular , Citocromos c/metabolismo , Fase G1/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
11.
Br J Nutr ; 117(5): 645-661, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28367764

RESUMEN

Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of ß-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/ß-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipogénesis/efectos de los fármacos , Isoflavonas/farmacología , Obesidad/prevención & control , Osteoporosis/prevención & control , beta Catenina/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Osteoporosis/etiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 1/genética , Regulación hacia Arriba/efectos de los fármacos
12.
Prep Biochem Biotechnol ; 47(3): 261-267, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-27536858

RESUMEN

Hyaluronan is a widely distributed glycosaminoglycan which has multiple functions. Hyaluronic acid (HA) accumulation has been reported in many human diseases. Understanding the role of hyaluronan and its binding proteins in the pathobiology of disease will facilitate the development of novel therapeutics for many critical diseases. Current techniques described for the analysis of HA are mainly for HA quantification in solutions, not for the direct detection of HA in tissues or on cell surfaces. In our study, a fusion protein, named C-terminal domain of RHAMM-enhanced green fluorescence protein (RHC-EGFP), combined the HA-binding domain, C-terminal of receptor for hyaluronan-mediated motility, with EGFP, a widely used enhanced green fluorescence protein, was expressed and purified from Escherichia coli with high purity. Based on the sensitivity and convenience of fluorescence detection, methods for direct assay of HA in solutions, on cell surface or in tissues were established using RHC-EGFP. The binding specificity was also confirmed by competitive binding experiment and hyaluronidase degradation experiment. Our results provide an alternative choice for the specific and convenient assay of HA in various samples, and maybe helpful for further understanding of the fundamental and comprehensive functions of HA.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Sitios de Unión , Línea Celular Tumoral , Clonación Molecular , Escherichia coli/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/aislamiento & purificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/aislamiento & purificación , Hialuronoglucosaminidasa/metabolismo , Microscopía Fluorescente , Plásmidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
13.
Prep Biochem Biotechnol ; 47(9): 889-900, 2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-28816622

RESUMEN

Recombinant simian IL-15 (siIL-15) was obtained for the preclinical assessment of an anti-human IL-15 vaccine. For this purpose, the cDNA from peripheral blood mononuclear cells of a Macaca fascicularis monkey was cloned into a pIL-2 vector. The siIL-15 was expressed in Escherichia coli strain W3110 as an insoluble protein which accounted for 13% of the total cellular proteins. Inclusion bodies were solubilized in an 8 M urea solution, which was purified by ion exchange and reverse phase chromatography up to 92% purity. The protein identity was validated by electrospray ionization-mass spectrometry, confirming the presence of the amino acids which distinguish the siIL-15 from human IL-15. The purified siIL-15 stimulates the proliferation of cytotoxic T-lymphocytes line (CTLL)-2 and Kit 225 cells with EC50 values of 3.1 and 32.5 ng/mL, respectively. Antisera from modified human IL-15-immunized macaques were reactive to human and simian IL-15 in enzyme-linked immunosorbent assays. Moreover, the anti-human IL-15 antibodies from immune sera inhibited siIL-15 activity in CTLL-2 and Kit 225 cells, supporting the activity and purity of recombinant siIL-15. These results indicate that the recombinant siIL-15 is biologically active in two IL-15-dependent cell lines, and it is also suitable for the preclinical evaluation of an IL-15-based therapeutic vaccine.


Asunto(s)
Interleucina-15/genética , Macaca fascicularis/genética , Vacunas Sintéticas/genética , Animales , Línea Celular , Clonación Molecular/métodos , Escherichia coli/genética , Humanos , Interleucina-15/inmunología , Macaca fascicularis/inmunología , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Linfocitos T Citotóxicos/inmunología , Vacunas Sintéticas/inmunología
14.
RNA Biol ; 12(4): 389-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806564

RESUMEN

APOBEC1 is the catalytic subunit of the complex that edits ApolipoproteinB (ApoB) mRNA, which specifically deaminates cytidine 6666 to uracil in the human transcript. The editing leads to the generation of a stop codon, resulting in the synthesis of a truncated form of ApoB. We have developed a method to quantitatively assay ApoB RNA editing in live cells by using a double fluorescent mCherry-EGFP chimera containing a ∼ 300 bp fragment encompassing the region of ApoB subject to RNA editing. Coexpression of APOBEC1 together with this chimera causes specific RNA editing of the ApoB fragment. The insertion of a stop codon between the mCherry and EGFP thus induces the loss of EGFP fluorescence. Using this method we analyze the dynamics of APOBEC1-dependent RNA editing under various conditions. Namely we show the interplay of APOBEC1 with known interactors (ACF, hnRNP-C1, GRY-RBP) in cells that are RNA editing-proficient (HuH-7) or -deficient (HEK-293T), and the effects of restricted cellular localization of APOBEC1 on the efficiency of the editing. Furthermore, our approach is effective in assaying the induction of RNA editing in Caco-2, a cellular model physiologically capable of ApoB RNA editing.


Asunto(s)
Citosina/metabolismo , Edición de ARN , ARN Mensajero/metabolismo , Uracilo/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citometría de Flujo/métodos , Humanos , Ratas
15.
Regen Ther ; 22: 99-108, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36712960

RESUMEN

Introduction: Periodontal ligament is regenerated in association with hard tissue regeneration. Tenomodulin (Tnmd) expression has been confirmed in periodontal ligament and it reportedly inhibits angiogenesis or is involved in collagen fibril maturation. The introduction of Tnmd by gene transfection in bone tissue regeneration therapy might inhibit topical hard tissue formation and induce the formation of dense fibrous tissue. Therefore, the effect of Tnmd introduction by gene transfection technique in vitro and in vivo was investigated in this study. Methods: Osteogenesis- and chondrogenesis-related gene expression levels in osteoblastic cells (MC3T3E1) and rat bone marrow derived cells were detected using qPCR three days after gene transfection with plasmid DNA (Tnmd) using non-viral gene transfection vectors: a calcium phosphate-based gene transfection vector (CaP(Tnmd)) or a cationic polymer-based reagent (JetPEI (Tnmd)). Next, an atelocollagen scaffold with or without CaP (Tnmd) or JetPEI (Tnmd) was implanted into a rat calvaria bone defect, and the remaining bone defect volume and the tissue reaction at 28 days after surgery were evaluated. Results: Runx 2 and SP7 mRNA was reduced by JetPEI (Tnmd) in both cells, but not in CaP(Tnmd). The volume of expressed Tnmd was at 9 ng/mL in both gene transfection vector. The remaining bone defect volume of JetPEI (Tnmd) was significantly bigger than that of the other groups and CaP (EGFP), and that of CaP (Tnmd) was significantly bigger than that of CaP (EGFP). Conclusions: Tnmd introduction treatment inhibits bone formation in artificial bone defect, however, the effect of that was dependent on non-viral gene transfection vector.

16.
Regen Ther ; 22: 169-175, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36843961

RESUMEN

Introduction: The process of cell product changeover poses a high risk of cross-contamination. Hence, it is essential to minimize cross-contamination while processing cell products. Following its use, the surface of a biosafety cabinet is commonly disinfected by ethanol spray and manual wiping methods. However, the effectiveness of this protocol and the optimal disinfectant have not yet been evaluated. Here, we assessed the effect of various disinfectants and manual wiping methods on bacterial removal during cell processing. Methods: The hard surface carrier test was performed to evaluate the disinfectant efficacy of benzalkonium chloride with a corrosion inhibitor (BKC + I), ethanol (ETH), peracetic acid (PAA), and wiping against Bacillus subtilis endospores. Distilled water (DW) was used as the control. A pressure sensor was employed to investigate the differences in loading under dry and wet conditions. The pre-spray for wiping was monitored by eight operators using a paper that turns black when wet. Chemical properties, including residual floating proteins, and mechanical properties, such as viscosity and coefficient of friction, were examined. Results: In total, 2.02 ± 0.21-Log and 3.00 ± 0.46-Log reductions from 6-Log CFU of B. subtilis endospores were observed for BKC + I and PAA, respectively, following treatment for 5 min. Meanwhile, wiping resulted in a 0.70 ± 0.12-Log reduction under dry conditions. Under wet conditions, DW and BKC + I showed 3.20 ± 0.17-Log and 3.92 ± 0.46-Log reductions, whereas ETH caused a 1.59 ± 0.26-Log reduction. Analysis of the pressure sensor suggested that the force was not transmitted under dry conditions. Evaluation of the amount of spray by eight operators showed differences and bias in the spraying area. While ETH had the lowest ratio in the protein floating and collection assays, it exhibited the highest viscosity. BKC + I had the highest friction coefficient under 4.0-6.3 mm/s; however, that of BKC + I decreased and became similar to the friction coefficient of ETH under 39.8-63.1 mm/s. Conclusions: DW and BKC + I are effective for inducing a 3-Log reduction in bacterial abundance. Moreover, the combination of optimal wet conditions and disinfectants is essential for effective wiping in specific environments containing high-protein human sera and tissues. Given that some raw materials processed in cell products contain high protein levels, our findings suggest that a complete changeover of biosafety cabinets is necessary in terms of both cleaning and disinfection.

17.
J Biochem ; 174(2): 143-164, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37039772

RESUMEN

Here, we show that 3,5-bis[(1E)-2-(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l depolymerizes microtubules and reduces the number of growing tips of microtubules. The fluorescence recovery after photobleaching experiment in live MCF-7 cells showed that pyrazole 2l suppresses spindle microtubule dynamics. Further, the compound inhibits chromosome movements, activates the spindle assembly checkpoint and blocks mitosis in MCF-7 cells. Pyrazole 2l treatment induced cell death in a variety of pathways. Pyrazole 2l induces cell death independent of BubR1 and p53 levels of MCF-7 cells upon microtubule depolymerization. Further, pyrazole 2l increases the interaction between NF-κB and microtubules and enhances the nuclear localization of NF-κB at its half-maximal proliferation inhibitory concentration while a high concentration of the compound reduced the nuclear localization of NF-κB. Interestingly, the compound exerted significantly stronger antiproliferative effects in cancerous cells than in non-cancerous cells. The results indicated that pyrazole 2l inhibits mitosis by targeting microtubules, induces several types of cell death stimuli and suggests its potential as a lead in developing anticancer agent.


Asunto(s)
Tubulina (Proteína) , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Tubulina (Proteína)/metabolismo , FN-kappa B/metabolismo , Microtúbulos/metabolismo , Mitosis , Muerte Celular , Pirazoles/farmacología , Pirazoles/metabolismo , Células HeLa
18.
Heliyon ; 9(3): e14006, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938407

RESUMEN

Septic acute kidney injury (AKI) is commonly associated with renal dysfunction and high mortality in patients. Owing to the rapid and violent occurrence of septic AKI with inflammation, there are no effective therapies to clinically treat it. Embelin, a natural product, has a potential regulatory role in immunocytes. However, the role and mechanism of embelin in septic AKI remains unknown. This study aimed to elucidate the role of embelin in macrophage regulation in lipopolysaccharide (LPS)-induced septic AKI. Embelin was intraperitoneally administered to mice after LPS injection. And bone marrow-derived macrophages (BMDMs) were subsequently isolated from the mice to explore the immunomodulatory role of embelin in macrophages. We found that embelin attenuated renal dysfunction and pathological renal damage in the LPS-induced sepsis mouse model. Molecular docking predicted that embelin could bind to phosphorylated NF-κB p65 at the ser536 site. Embelin inhibited the translocation of NF-κB p65 via phosphorylation at ser536 in LPS-induced AKI. It also reduced the secretion of IL-1ß and IL-6 and increased the secretion of IL-10 and Arg-1 of BMDMs and mice after LPS stimulation, indicating that embelin suppressed macrophage M1 activation in LPS-induced AKI. Therefore, embelin attenuated LPS-induced septic AKI by suppressing NF-κB p65 at ser536 in activated macrophages. This study preclinically suggests a therapeutic role of embelin in septic AKI.

19.
Bioact Mater ; 19: 429-443, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35574058

RESUMEN

The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles. Immobilization of SRT2104 on mineral coating (MAM/SRT) harnessing their electrostatic interactions resulted in sustained release of SIRT-1 agonist for over 30 days. MAM/SRT not only enhanced osteogenic differentiation and mineralization, but also attenuated the formation and function of excessive osteoclasts via integrating multiple vital upstream signals (ß-catenin, FoxOs, Runx2, NFATc1, etc.) in vitro. Osteoporosis animal model also validated that it accelerated osteoporotic bone healing and improved osseointegration of the surrounding bone. Overall, our work proposes a promising strategy to treat osteoporotic bone defects by reversing the imbalance in bone homeostasis using designated small molecule drug delivery systems.

20.
Heliyon ; 9(2): e13170, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36785830

RESUMEN

Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated ß-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda