Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
J Neurochem ; 168(6): 1113-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38339785

RESUMEN

The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.


Asunto(s)
Clorhidrato de Fingolimod , Hipocampo , Lipidómica , Ratones Endogámicos C57BL , Animales , Clorhidrato de Fingolimod/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Masculino , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Inmunosupresores/farmacología
2.
Eur J Immunol ; 53(9): e2350370, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37366289

RESUMEN

Fingolimod has generally shown neuroprotective effects in stroke models. Here, we tested the hypothesis that fingolimod modulates T-cell cytokine production towards a regulatory phenotype. Second, we investigated how fingolimod altered the Treg suppressive function and the sensitivity of effector T cells to regulation. Mice that had underwent the permanent electrocoagulation of the left middle cerebral artery received saline or fingolimod (0.5 mg/kg) daily for 10-days post-ischaemia. Fingolimod improved neurobehavioural recovery compared to saline control and increased Treg frequency in the periphery and brain. Tregs from fingolimod-treated animals had a higher expression of CCR8. Fingolimod increased the frequencies of CD4+ IL-10+ , CD4+ IFN-γ+ and CD4+ IL-10+ IFN-γ+ cells in spleen and blood, and CD4+ IL-17+ cells in the spleen, with only minor effects on CD8+ T-cell cytokine production. Treg from post-ischaemic mice had reduced suppressive function compared to Treg from non-ischaemic mice. Fingolimod treatment rescued this function against saline-treated but not fingolimod-treated CD4+ effector T cells. In conclusion, fingolimod seems to improve the suppressive function of Treg post-stroke while also increasing the resistance of CD4+ effector cells to this suppression. Fingolimod's capacity to increase both effector and regulatory functions may explain the lack of consistent improvement in functional recovery in experimental brain ischaemia.


Asunto(s)
Isquemia Encefálica , Clorhidrato de Fingolimod , Ratones , Animales , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Linfocitos T Reguladores/metabolismo , Interleucina-10/metabolismo , Expresión Génica , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38837706

RESUMEN

OBJECTIVES: Increasing studies demonstrated the importance of C5a and anti-neutrophil cytoplasmic antibody (ANCA)-induced neutrophil activation in the pathogenesis of ANCA-associated vasculitis (AAV). Sphingosine-1-phosphate (S1P) acts as a downstream effector molecule of C5a and enhances neutrophil activation induced by C5a and ANCA. The current study investigated the role of a S1P receptor modulator FTY720 in experimental autoimmune vasculitis (EAV) and explored the immunometabolism-related mechanisms of FTY720 in modulating ANCA-induced neutrophil activation. METHODS: The effects of FTY720 in EAV were evaluated by quantifying hematuria, proteinuria, crescent formation, tubulointerstitial injury and pulmonary hemorrhage. RNA sequencing of renal cortex and gene enrichment analysis were performed. The proteins of key identified pathways were analyzed in neutrophils isolated from peripheral blood of patients with active AAV and normal controls. We assessed the effects of FTY720 on ANCA-induced neutrophil respiratory burst and neutrophil extracellular traps formation (NETosis). RESULTS: FTY720 treatment significantly attenuated renal injury and pulmonary hemorrhage in EAV. RNA sequencing analyses of renal cortex demonstrated enhanced fatty acid oxidation (FAO) and peroxisome proliferators-activated receptors (PPAR) signalling in FTY720-treated rats. Compared with normal controls, patients with active AAV showed decreased FAO in neutrophils. FTY720-treated differentiated HL-60 cells showed increased expression of carnitine palmitoyltransferase 1A (CPT1a) and PPARα. Blocking or knockdown of CPT1a or PPARα in isolated human neutrophils and HL-60 cells reversed the inhibitory effects of FTY720 on ANCA-induced neutrophil respiratory burst and NETosis. CONCLUSION: FTY720 attenuated renal injury in EAV through upregulating FAO via the PPARα-CPT1a pathway in neutrophils, offering potential immunometabolic targets in AAV treatment.

4.
Bioorg Chem ; 147: 107412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696845

RESUMEN

The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.


Asunto(s)
Antineoplásicos , ADN-Topoisomerasas de Tipo I , Clorhidrato de Fingolimod , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa I , Humanos , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/química , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Células MCF-7
5.
J Neural Transm (Vienna) ; 130(8): 1003-1012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014414

RESUMEN

Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models and in humans suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals or in elderly humans before onset of disease symptoms. However, a pharmacological treatment that can reverse memory deficits in AD patients was thus far not identified. Importantly, AD disease-related dysfunctions have increasingly been associated with neuro-inflammatory mechanisms and searching for anti-inflammatory medication to treat AD seems promising. Like for other diseases, repurposing of FDA-approved drugs for treatment of AD is an ideally suited strategy to reduce the time to bring such medication into clinical practice. Of note, the sphingosine-1-phosphate analogue fingolimod (FTY720) was FDA-approved in 2010 for treatment of multiple sclerosis patients. It binds to the five different isoforms of Sphingosine-1-phosphate receptors (S1PRs) that are widely distributed across human organs. Interestingly, recent studies in five different mouse models of AD suggest that FTY720 treatment, even when starting after onset of AD symptoms, can reverse synaptic deficits and memory dysfunction in these AD mouse models. Furthermore, a very recent multi-omics study identified mutations in the sphingosine/ceramide pathway as a risk factor for sporadic AD, suggesting S1PRs as promising drug target in AD patients. Therefore, progressing with FDA-approved S1PR modulators into human clinical trials might pave the way for these potential disease modifying anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Ratones , Animales , Humanos , Anciano , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Reposicionamiento de Medicamentos , Esclerosis , Esclerosis Múltiple/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
6.
J Appl Toxicol ; 43(2): 220-229, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35946054

RESUMEN

FTY720P, an analogue of sphingosine 1-phosphate, has emerged lately as a potential causative agent of inflammatory bowel disease, in which electrolytes movements driven by the sodium gradient established by the Na+ /K+ ATPase are altered. We showed previously in Caco-2 cells, a 50% FTY720P-induced decrease in the ATPase activity, mediated via S1PR2 and PGE2. This work aims at delineating the mechanism underlying PGE2 release and at investigating if the ATPase inhibition is due to changes in its abundance. The activity of the ATPase and the localization of a GFP-tagged Na+ /K+ -ATPase α1 -subunit were assessed in cells treated with 7.5 nM FTY720P. The involvement of ERK, p38 MAPK, PKC, and PI3K was studied in cells treated with 7.5 nM FTY720P or 1 nM PGE2 in presence of their inhibitors, or by determining changes in the protein expression of their activated phosphorylated forms. Imaging data showed ∼30% reduction in the GFP-tagged Na+ /K+ ATPase at the plasma membrane. Both FTY720P and PGE2 showed, respectively, 50% and 60% reduction in ATPase activity that disappeared when p38 MAPK, PKC, and PI3K were inhibited individually but not with ERK inhibition. The effect of FTY720P was imitated by PMA, an activator of PKC. Western blotting revealed inhibition of ERK by FTY720P. It was concluded that FTY720P, through activation of S1PR2, downregulates the Na+ /K+ ATPase by inhibiting ERK, which in turn activates p38 MAPK leading to the sequential activation of PKC and PI3K, PGE2 release, and a decrease in the Na+ /K+ ATPase activity and membrane abundance.


Asunto(s)
Proteína Quinasa C , Transducción de Señal , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células CACO-2 , Dinoprostona/metabolismo , Dinoprostona/farmacología , Sodio/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108539

RESUMEN

FTY720 is an FDA-approved sphingosine derivative drug for the treatment of multiple sclerosis. This compound blocks lymphocyte egress from lymphoid organs and autoimmunity through sphingosine 1-phosphate (S1P) receptor blockage. Drug repurposing of FTY720 has revealed improvements in glucose metabolism and metabolic diseases. Studies also demonstrate that preconditioning with this compound preserves the ATP levels during cardiac ischemia in rats. The molecular mechanisms by which FTY720 promotes metabolism are not well understood. Here, we demonstrate that nanomolar concentrations of the phosphorylated form of FTY720 (FTY720-P), the active ligand of S1P receptor (S1PR), activates mitochondrial respiration and the mitochondrial ATP production rate in AC16 human cardiomyocyte cells. Additionally, FTY720-P increases the number of mitochondrial nucleoids, promotes mitochondrial morphology alterations, and induces activation of STAT3, a transcription factor that promotes mitochondrial function. Notably, the effect of FTY720-P on mitochondrial function was suppressed in the presence of a STAT3 inhibitor. In summary, our results suggest that FTY720 promotes the activation of mitochondrial function, in part, through a STAT3 action.


Asunto(s)
Clorhidrato de Fingolimod , Esfingosina , Ratas , Humanos , Animales , Clorhidrato de Fingolimod/farmacología , Glicoles de Propileno/farmacología , Ligandos , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato , Inmunosupresores/farmacología , Factor de Transcripción STAT3/metabolismo
8.
Annu Rev Pharmacol Toxicol ; 59: 149-170, 2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30625282

RESUMEN

Fingolimod (FTY720, Gilenya) was the first US Food and Drug Administration-approved oral therapy for relapsing forms of multiple sclerosis (MS). Research on modified fungal metabolites converged with basic science studies that had identified lysophospholipid (LP) sphingosine 1-phosphate (S1P) receptors, providing mechanistic insights on fingolimod while validating LP receptors as drug targets. Mechanism of action (MOA) studies identified receptor-mediated processes involving the immune system and the central nervous system (CNS). These dual actions represent a more general theme for S1P and likely other LP receptor modulators. Fingolimod's direct CNS activities likely contribute to its efficacy in MS, with particular relevance to treating progressive disease stages and forms that involve neurodegeneration. The evolving understanding of fingolimod's MOA has provided strategies for developing next-generation compounds with superior attributes, suggesting new ways to target S1P as well as other LP receptor modulators for novel therapeutics in the CNS and other organ systems.


Asunto(s)
Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Esclerosis Múltiple/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
9.
Cell Physiol Biochem ; 56(4): 418-435, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36041048

RESUMEN

BACKGROUND/AIMS: In renal ischemia, the Na+/K+ ATPase of the kidney epithelial cells translocates to intracellular compartments, resulting in altered kidney functions. Sphingosine-1-phosphate (S1P) was shown to play a protective role against this ischemic injury. Whether the sphingolipid targets the Na+/K+ ATPase is a possibility that has not been explored before. This work aims at investigating the effect of S1P on renal Na+/K+ ATPase using its analogue FTY720P and LLC-PK1 cells. METHODS: The activity of the Na+/K+ ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain, a specific inhibitor of the enzyme while its protein expression was studied by western blot analysis. RESULTS: FTY720P increased the activity of the ATPase in a dose and time dependent manner, with a highest effect observed at 15 minutes and a dose of 80 nM. The protein expression was also increased. The stimulation of the Na+/K+ ATPase disappeared completely in presence of JTE-013, a specific blocker of S1PR2, as well as in presence of Y-27632, a Rho kinase inhibitor, BAPTA-AM, a Ca2+ chelator, wortmannin, a PI3K inhibitor, carboxy-PTIO, a scavenger for nitric oxide (NO), and KT 5823, a PKG inhibitor. CYM 5520, a S1PR2 agonist mimicked the effect of FTY720P. FTY720P increased the expression of p-Akt, a direct effector of PI3K, however, this increase disappeared when Rho kinase was inhibited, revealing that Rho kinase acts upstream PI3K. Glyco-SNAP-1, a NO donor, activated the pump in both presence and absence of wortmannin, indicating that PI3K is upstream NO. Interestingly, glyco-SNAP-1 and 8-bromo-cGMP, a PKG activator, exerted no effect on the Na+/K+ ATPase in absence of free Ca2+ revealing that the NO mediated effect is calcium-dependent. The involvement of calcium was further confirmed by the translocation of NFAT to the nucleus. The presence of verapamil or extracellular EGTA abolished the stimulatory effect of FTY720P, indicating that the source of calcium is extracellular. CONCLUSION: The results suggest that FTY720P activates sequentially S1PR2, Rho kinase, PI3K, leading to NO release and PKG stimulation. The latter phosphorylates calcium channels in the cell membrane, leading to calcium influx, and translocation of the ATPase units to the membrane.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Quinasas Asociadas a rho , Animales , Calcio/metabolismo , Óxido Nítrico/metabolismo , Organofosfatos , Fosfatidilinositol 3-Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Esfingosina/análogos & derivados , Porcinos , Wortmanina/farmacología , Quinasas Asociadas a rho/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498944

RESUMEN

Formation of foam cells as a result of excess lipid accumulation by macrophages is a pathological hallmark of atherosclerosis. Fingolimod (FTY720) is an immunosuppressive agent used in clinical settings for the treatment of multiple sclerosis and has been reported to inhibit atherosclerotic plaque development. However, little is known about the effect of FTY720 on lipid accumulation leading to foam cell formation. In this study, we investigated the effects of FTY720 on lipid accumulation in murine macrophages. FTY720 treatment reduced lipid droplet formation and increased the expression of ATP-binding cassette transporter A1 (ABCA1) in J774 mouse macrophages. FTY720 also enhanced the expression of liver X receptor (LXR) target genes such as FASN, APOE, and ABCG1. In addition, FTY720-induced upregulation of ABCA1 was abolished by knockdown of sphingosine kinase 2 (SphK2) expression. Furthermore, we found that FTY720 treatment induced histone H3 lysine 9 (H3K9) acetylation, which was lost in SphK2-knockdown cells. Taken together, FTY720 induces ABCA1 expression through SphK2-mediated acetylation of H3K9 and suppresses lipid accumulation in macrophages, which provides novel insights into the mechanisms of action of FTY720 on atherosclerosis.


Asunto(s)
Aterosclerosis , Clorhidrato de Fingolimod , Ratones , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células Espumosas/metabolismo , Aterosclerosis/metabolismo
11.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163009

RESUMEN

The fusion of membranes is a central part of the physiological processes involving the intracellular transport and maturation of vesicles and the final release of their contents, such as neurotransmitters and hormones, by exocytosis. Traditionally, in this process, proteins, such SNAREs have been considered the essential components of the fusion molecular machinery, while lipids have been seen as merely structural elements. Nevertheless, sphingosine, an intracellular signalling lipid, greatly increases the release of neurotransmitters in neuronal and neuroendocrine cells, affecting the exocytotic fusion mode through the direct interaction with SNAREs. Moreover, recent studies suggest that FTY-720 (Fingolimod), a sphingosine structural analogue used in the treatment of multiple sclerosis, simulates sphingosine in the promotion of exocytosis. Furthermore, this drug also induces the intracellular fusion of organelles such as dense vesicles and mitochondria causing cell death in neuroendocrine cells. Therefore, the effect of sphingosine and synthetic derivatives on the heterologous and homologous fusion of organelles can be considered as a new mechanism of action of sphingolipids influencing important physiological processes, which could underlie therapeutic uses of sphingosine derived lipids in the treatment of neurodegenerative disorders and cancers of neuronal origin such neuroblastoma.


Asunto(s)
Exocitosis/efectos de los fármacos , Células Neuroendocrinas/metabolismo , Esfingosina/metabolismo , Animales , Transporte Biológico , Humanos , Fusión de Membrana , Proteínas SNARE/metabolismo , Esfingosina/farmacología
12.
J Neurosci ; 40(15): 3104-3118, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32127495

RESUMEN

Krabbe's disease is an infantile neurodegenerative disease, which is affected by mutations in the lysosomal enzyme galactocerebrosidase, leading to the accumulation of its metabolite psychosine. We have shown previously that the S1P receptor agonist fingolimod (FTY720) attenuates psychosine-induced glial cell death and demyelination both in vitro and ex vivo models. These data, together with a lack of therapies for Krabbe's disease, prompted the current preclinical study examining the effects of fingolimod in twitcher mice, a murine model of Krabbe's disease. Twitcher mice, both male and female, carrying a natural mutation in the galc gene were given fingolimod via drinking water (1 mg/kg/d). The direct impact of fingolimod administration was assessed via histochemical and biochemical analysis using markers of myelin, astrocytes, microglia, neurons, globoid cells, and immune cells. The effects of fingolimod on twitching behavior and life span were also demonstrated. Our results show that treatment of twitcher mice with fingolimod significantly rescued myelin levels compared with vehicle-treated animals and also regulated astrocyte and microglial reactivity. Furthermore, nonphosphorylated neurofilament levels were decreased, indicating neuroprotective and neurorestorative processes. These protective effects of fingolimod on twitcher mice brain pathology was reflected by an increased life span of fingolimod-treated twitcher mice. These in vivo findings corroborate initial in vitro studies and highlight the potential use of S1P receptors as drug targets for treatment of Krabbe's disease.SIGNIFICANCE STATEMENT This study demonstrates that the administration of the therapy known as fingolimod in a mouse model of Krabbe's disease (namely, the twitcher mouse model) significantly rescues myelin levels. Further, the drug fingolimod also regulates the reactivity of glial cells, astrocytes and microglia, in this mouse model. These protective effects of fingolimod result in an increased life span of twitcher mice.


Asunto(s)
Enfermedades Desmielinizantes/tratamiento farmacológico , Clorhidrato de Fingolimod/uso terapéutico , Leucodistrofia de Células Globoides/tratamiento farmacológico , Animales , Astrocitos/metabolismo , Conducta Animal , Femenino , Leucodistrofia de Células Globoides/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Microglía/metabolismo , Vaina de Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo , Fosforilación , Proproteína Convertasas/efectos de los fármacos , Células de Purkinje/metabolismo , Serina Endopeptidasas/efectos de los fármacos
13.
Genes Cells ; 25(9): 637-645, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32682352

RESUMEN

FTY720, a sphingosine-1-phosphate (S1P) analog, is used as an immune modulator to treat multiple sclerosis. Accumulating evidence has suggested the mode of action of FTY720 independent of an S1P modulator. In fission yeast, FTY720 induces an increase in intracellular Ca2+ and ROS levels. We have previously identified 49 genes of which deletion causes FTY720 sensitivity. Here, we characterized the FTY720-sensitive mutants in terms of their relevance to the Ca2+ homeostasis and identified the 16 FTY720- and Ca2+ -sensitive mutants (fcs mutants). Most of the FTY720-sensitive mutants showed elevated Ca2+ levels and exhibited Ca2+ dysregulation by FTY720 treatment. One of the functional categories among the genes whose deletion renders cells susceptible to FTY720 and Ca2+ include the Golgi/endosomal membrane trafficking. Notably, FTY720, but not phosphorylated FTY720 incapable of inducing Ca2+ increase, inhibited the secretion of acid phosphatase in the wild-type cells. Importantly, secretory defects of the Golgi/endosomal trafficking mutants, Vps45, or Ryh1 deletion, were further exacerbated by FTY720. Our fcs mutant screen also identified the adenylyl cyclase-associated protein Cap1 and a Rictor homolog Ste20, whose deletion markedly exacerbated FTY720-sensitive secretory impairment. Collectively, our data may suggest a synergistic impact of FTY720 combined with secretion perturbation on proliferation and Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Endosomas/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Aparato de Golgi/efectos de los fármacos , Transporte Biológico , Endosomas/metabolismo , Eliminación de Gen , Aparato de Golgi/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
14.
Arch Biochem Biophys ; 711: 109015, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34437865

RESUMEN

FTY720 is an immunosuppressive agent which has been approved to treat multiple sclerosis (MS). The main object of the present study is to investigate whether FTY720 has the potential to induce the formation of neutrophil extracellular traps (NETs) in vitro. Using Sytox Green assay and fluorescence microscopy, our results showed that FTY720 trigged the NET formation. In contrast to classic NET formation induced by Phorbol 12-myristate 13-acetate (PMA), FTY720-induced NETs were detected earlier and independent of NADPH oxidase (NOX) activity. Pharmacological inhibitor experiments indicated that autophagy was also required for the NET formation induced by FTY720. Moreover, p38 and AKT inhibitor significantly suppressed the NET formation by FTY720, whereas ERK inhibitor had no effect, suggesting that FTY720-induced NETs depended on the activation of p38 and AKT. We further found that citrullination of histone H3 and peptidylarginine deiminase 4 (PAD4) did not mediated FTY720-induced NET formation. Interestingly, necroptosis signaling activation was involved in the vital NET formation by FTY720, however, plasma membrane rupture resulting from necroptosis was not a major component of NET formation described here. Collectively, these findings indicated that FTY720 could be a potential antibacterial drug to protect host against pathogen infection.


Asunto(s)
Trampas Extracelulares/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Inmunosupresores/farmacología , Neutrófilos/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Necroptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32342246

RESUMEN

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia , Clorhidrato de Fingolimod/farmacología , Microglía/metabolismo , Microglía/patología , Factor de Transcripción STAT1/metabolismo , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Inflamación/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Modelos Biológicos , Fenotipo , Transducción de Señal/efectos de los fármacos
16.
Int J Med Sci ; 18(2): 304-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390799

RESUMEN

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.


Asunto(s)
Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Clorhidrato de Fingolimod/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Astrocitos/patología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Permeabilidad Capilar/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos ICR
17.
Phytother Res ; 35(4): 2157-2170, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33274566

RESUMEN

Chronic myelomonocytic leukemia (CML) is a myeloid tumor characterized by MDS (myelodysplastic syndrome) and MPN (myeloproliferative neoplasms). Allogeneic hematopoietic stem cell transplantation, chemotherapy, interferon, and targeted therapy are the main treatment methods for CML. Tyrosine kinase inhibitors (TKIs) are also a treatment option, and patients are currently recommended to take these drugs throughout their lives to prevent CML recurrence. Therefore, there is a need to investigate and identify other potential chemotherapy drugs. Currently, research on CML treatment with a single drug has shown little progress. Fingolimod (FTY720), an FDA-approved drug used to treat relapsing multiple sclerosis, has also shown great potential in the treatment of lymphocytic leukemia. In our study, we find that FTY720 and curcumol have a significant inhibitory effect on K562 cells, K562/ADR cells, and CD34+ cells from CML patients. RNAseq data analysis shows that regulation of apoptosis and differentiation pathways are key pathways in this process. Besides, BCR/ABL-Jak2/STAT3 signaling, PI3K/Akt-Jnk signaling, and activation of BH3-only genes are involved in CML inhibition. In a K562 xenograft mouse model, therapy with curcumol and FTY720 led to significant inhibition of tumor growth and induction of apoptosis. To summarize, curcumol and FTY720 synergistically inhibit proliferation involved in differentiation and induce apoptosis in CML cells. Therefore, synergistic treatment with two drugs could be the next choice of treatment for CML.


Asunto(s)
Clorhidrato de Fingolimod/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Sesquiterpenos/uso terapéutico , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Humanos , Ratones , Sesquiterpenos/farmacología , Transducción de Señal
18.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922596

RESUMEN

As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Terapia Molecular Dirigida
19.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298877

RESUMEN

Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Clorhidrato de Fingolimod/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteína Fosfatasa 2/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Inmunosupresores/farmacología , Células MCF-7 , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573114

RESUMEN

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by progressive and irreversible cognitive decline, with no disease-modifying therapy until today. Spike timing-dependent plasticity (STDP) is a Hebbian form of synaptic plasticity, and a strong candidate to underlie learning and memory at the single neuron level. Although several studies reported impaired long-term potentiation (LTP) in the hippocampus in AD mouse models, the impact of amyloid-ß (Aß) pathology on STDP in the hippocampus is not known. Using whole cell patch clamp recordings in CA1 pyramidal neurons of acute transversal hippocampal slices, we investigated timing-dependent (t-) LTP induced by STDP paradigms at Schaffer collateral (SC)-CA1 synapses in slices of 6-month-old adult APP/PS1 AD model mice. Our results show that t-LTP can be induced even in fully developed adult mice with different and even low repeat STDP paradigms. Further, adult APP/PS1 mice displayed intact t-LTP induced by 1 presynaptic EPSP paired with 4 postsynaptic APs (6× 1:4) or 1 presynaptic EPSP paired with 1 postsynaptic AP (100× 1:1) STDP paradigms when the position of Aß plaques relative to recorded CA1 neurons in the slice were not considered. However, when Aß plaques were live stained with the fluorescent dye methoxy-X04, we observed that in CA1 neurons with their somata <200 µm away from the border of the nearest Aß plaque, t-LTP induced by 6× 1:4 stimulation was significantly impaired, while t-LTP was unaltered in CA1 neurons >200 µm away from plaques. Treatment of APP/PS1 mice with the anti-inflammatory drug fingolimod that we previously showed to alleviate synaptic deficits in this AD mouse model did not rescue the impaired t-LTP. Our data reveal that overexpression of APP and PS1 mutations in AD model mice disrupts t-LTP in an Aß plaque distance-dependent manner, but cannot be improved by fingolimod (FTY720) that has been shown to rescue conventional LTP in CA1 of APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Potenciación a Largo Plazo/fisiología , Placa Amiloide/patología , Sinapsis/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/administración & dosificación , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Mutación , Técnicas de Placa-Clamp , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/genética , Placa Amiloide/fisiopatología , Presenilina-1/genética , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Células Piramidales/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda