Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Nano Lett ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787330

RESUMEN

While oral probiotics show promise in treating inflammatory bowel disease, the primary challenge lies in sustaining their activity and retention within the inflamed gastrointestinal environment. In this work, we develop an engineered probiotic platform that is armed with biocatalytic and inflamed colon-targeting nanocoatings for multipronged management of IBD. Notably, we achieve the in situ growth of artificial nanocatalysts on probiotics through a bioinspired mineralization strategy. The resulting ferrihydrite nanostructures anchored on bacteria exhibit robust catalase-like activity across a broad pH range, effectively scavenging ROS to alleviate inflammation. The further envelopment with fucoidan-based shields confers probiotics with additional inflamed colon-targeting functions. Upon oral administration, the engineered probiotics display markedly improved viability and colonization within the inflamed intestine, and they further elicit boosted prophylactic and therapeutic efficacy against colitis through the synergistic interplay of nanocatalysis-based immunomodulation and probiotics-mediated microbiota reshaping. The robust and multifunctional probiotic platforms offer great potential for the comprehensive management of gastrointestinal disorders.

2.
Chemphyschem ; 25(16): e202400144, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38727608

RESUMEN

Aqueous iron solutions generally undergo spontaneous hydrolysis followed by aggregation resulting in the precipitation of nanocrystalline oxyhydroxide minerals. The mechanism of nucleation of such multinuclear oxyhydroxide clusters are unclear due to limited experimental evidence. Here, we investigate the mechanistic pathway of dimerization of Fe(III) ions using density functional theory (DFT) in aqueous medium considering effects of other ligands. Two hydrolyzed monomeric Fe(III) ions in aqueous medium may react to form two closely related binuclear products, the µ-oxo and the dihydroxo Fe2 dimer. Our studies indicate that the water molecules in the second coordination sphere and those co-ordinated to the Fe(III) ion, both participate in the dimerization process. The proposed mechanism effectively explains the formation of dihydroxo and µ-oxo Fe2 dimers with interconversion possibilities, for the first time. Results show, with only water molecules present in the second co-ordination sphere, dihydroxo Fe2 dimer is the thermodynamically and kinetically favored product with a low activation free energy. We calculated the step-wise reaction free energies of dimerization in the presence of nitrate ions in the first and second coordination sphere of Fe(III) ion separately, which shows that with nitrate ions in the second co-ordination sphere, the µ-oxo Fe2 dimer is the kinetically favored product.

3.
Environ Sci Technol ; 58(32): 14475-14485, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088342

RESUMEN

Antimony(V) substitution is common in secondary ferrihydrite, especially in mining areas and tailings. However, its impact on the adsorption behavior of ferrihydrite is still unclear. Therefore, this study investigated the influential mechanisms of Sb(V) substitution on the lattice structure and surface properties of Sb-substituted ferrihydrite (SbFh), and its adsorption of coexisting Sb(OH)6-. Antimony(V) is substituted at Fe1 sites and is primarily distributed on the surface. Substitution has opposing effects on the outer- and inner-sphere complexation of Sb(OH)6-. On one hand, substituted-Sb(V) transfers more positive charges to ≡FeOH, reducing the number of H bonds. Subsequently, the charge saturation of ≡FeOH decreases, surface charge increases, and outer-sphere complexation is promoted. On the other hand, the elevated bond valence of Sb-O increases charge saturation of ≡FeOH, reducing the charge capacity that ≡FeOH can accommodate from inner-sphere complexes. Thus, inner-sphere complexation is inhibited. Inner-sphere complexation plays a more important role, and Sb(OH)6- adsorption is inhibited. Additionally, the primary complexation modes of Sb(OH)6- transform from bidentate to monodentate complexation. This research has important implications for understanding the environmental behavior of ferrihydrite, as well as the fate and bioavailability of antimony in mining areas and tailings.


Asunto(s)
Antimonio , Propiedades de Superficie , Antimonio/química , Adsorción , Compuestos Férricos/química
4.
Environ Sci Technol ; 58(13): 5952-5962, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506754

RESUMEN

The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Minerales , Adsorción
5.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833530

RESUMEN

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Asunto(s)
Compuestos Férricos , Oryza , Fosfatos , Suelo , Oryza/química , Fosfatos/química , Suelo/química , Adsorción , Compuestos Férricos/química , Minerales/química , Espectroscopía de Mossbauer , Hierro/química , Oxidación-Reducción
6.
Environ Sci Technol ; 58(22): 9840-9849, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775339

RESUMEN

The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.


Asunto(s)
Yodo , Hierro , Yodo/química , Hierro/química , Adsorción , Agua Subterránea/química , Minerales/química
7.
Environ Sci Technol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141599

RESUMEN

Ferrihydrite is omnipresent in nature, and its adsorption of As(III/V) decides the migration of arsenic. Although As(III) is commonly recognized as the more mobile species of inorganic arsenic, it sometimes exhibits less mobility in ferrihydrite systems, which calls for further insights. In this study, we elucidated the adsorption behavior and mechanisms of As(III/V) on ferrihydrite under different loading levels (molar ratio As/Fe = 0-0.38), solution pH (3-10), and coexisting ions [P(V) and Ca(II)] based on batch adsorption experiments, surface complexation modeling, density functional theory calculations, and X-ray photoelectron spectroscopy. Our results show that As(III) exhibits weaker adsorption affinity but a larger capacity compared with that of As(V). On ferrihydrite, As(III) and As(V) are adsorbed mainly as bidentate mononuclear complexes at type-a sites [≡Fe(OH-0.5)2] and bidentate binuclear complexes at type-b sites (2≡FeOH-0.5), respectively. As the dosage increases, As(III) further forms mononuclear monodentate complexes at both surface sites, resulting in a higher site utilization efficiency, while As(V) does not due to repulsive electrostatic interaction. The difference in surface species of As(III/V) also leads to complex responses when coexisting with high concentrations of P(V) and Ca(II). This study helps us to understand environmental behavior of As(III/V) and develop remediation strategy in As(III/V) contaminated systems.

8.
Environ Sci Technol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020513

RESUMEN

Microplastic-derived dissolved organic matter (MP-DOM) is an emerging carbon source in the environment. Interactions between MP-DOM and iron minerals alter the transformation of ferrihydrite (Fh) as well as the distribution and fate of MP-DOM. However, these interactions and their effects on both two components are not fully elucidated. In this study, we selected three types of MP-DOM as model substances and utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the structural features of DOMs and DOM-mineral complexes at the molecular and atomic levels. Our results suggest that carboxyl and hydroxyl groups in MP-DOM increased the Fe-O bond length by 0.02-0.03 Å through interacting with Fe atoms in the first shell, thereby inhibiting the transformation of Fh to hematite (Hm). The most significant inhibition of Fh transformation was found in PS-DOM, followed by PBAT-DOM and PE-DOM. MP-DOM components, such as phenolic compounds and condensed polycyclic aromatics (MW > 360 Da) with high oxygen content and high unsaturation, exhibited stronger mineral adsorption affinity. These findings provide a profound theoretical basis for accurately predicting the behavior and fate of iron minerals as well as MP-DOM in complex natural environments.

9.
Environ Res ; 250: 118440, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360164

RESUMEN

Ferrihydrite is an effective adsorbent of chromate and arsenate. In order to gain insight into the application of ferrihydrite in water treatment, macroporous alginate/ferrihydrite beads, synthesized using two different methods (internal and encapsulation processes), were used in this work. The properties of the ferrihydrite were assessed using various techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) theory, and zetametry. The results showed that the specific surface area of the ferrihydrite was 242 m2/g, and the PZC was pH8. The kinetic and isotherm adsorption properties of the ferrihydrite were evaluated in this study. The results indicate that the pseudo second-order and Freundlich models accurately describe the kinetic and isotherm adsorption properties of chromates and arsenates. For chromate removal, ferrihydrite exhibited a relatively high adsorption capacity (40.7 mgCr/g) compared to other adsorbents. However, the arsenate adsorption capacity of MFHB-SI (140.8 mgAs/g) was shown to be the most optimal. The internal synthesis process was suitable for arsenate retention due to the resulting arsenate precipitation. The competitive adsorption analyses indicated that the presence of chromate does not limit the adsorption of arsenate. However, the presence of arsenate almost completely inhibits the adsorption of chromate when the arsenate concentration is above 50 mg/L, due to the precipitation reaction of arsenate.


Asunto(s)
Alginatos , Arseniatos , Cromatos , Compuestos Férricos , Contaminantes Químicos del Agua , Arseniatos/química , Adsorción , Cromatos/química , Compuestos Férricos/química , Alginatos/química , Contaminantes Químicos del Agua/química , Ácido Glucurónico/química , Cinética , Ácidos Hexurónicos/química , Purificación del Agua/métodos
10.
Environ Res ; 251(Pt 1): 118650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458586

RESUMEN

The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 µmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.


Asunto(s)
Enoxacino , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Contaminantes Químicos del Agua , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Hierro/química , Enoxacino/química , Catálisis , Peróxido de Hidrógeno/química , Antibacterianos/química
11.
Environ Res ; 242: 117667, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980994

RESUMEN

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Asunto(s)
Compuestos Férricos , Compuestos Ferrosos , Shewanella putrefaciens , Oxidación-Reducción , Fosfatos , Minerales
12.
Environ Res ; 250: 118470, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373548

RESUMEN

In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.


Asunto(s)
Compuestos Férricos , Sustancias Húmicas , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Sustancias Húmicas/análisis , Compuestos Férricos/química , Suelo/química , Metales Pesados/análisis , Microbiología del Suelo , Restauración y Remediación Ambiental/métodos , Agricultura/métodos
13.
Nano Lett ; 23(17): 8355-8362, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656434

RESUMEN

Oxidative stress and hypoxia are two key biochemical factors in the development of rheumatoid arthritis (RA). As both reactive oxygen species (ROS) and oxygen gas (O2) are oxygen-related chemicals, we suggest that a redox reaction converting ROS into O2 can mitigate oxidative stress and hypoxia concurrently, synergistically modulating the inflammatory microenvironment. In this work, ferrihydrite, a typical iron oxyhydroxide, is prepared in nanodimensions in which tetrahedrally coordinated Fe can form a composite catalytic center by coupling with an adjacent hydroxyl group, cooperatively facilitating H2O2 decomposition and O2 generation, presenting a high catalase-like activity. In the RA region, the nanomaterial catalyzes the conversion of excess H2O2 into O2, achieving both antioxidation and oxygenation favoring the alleviation of inflammation. Both cellular and in vivo experiments demonstrate the desirable efficacy of ferrihydrite nanoparticles for RA treatment. This work provides a methodology for the catalytic therapy of inflammatory diseases featuring both oxidative stress and hypoxia.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Artritis Reumatoide/tratamiento farmacológico , Nanopartículas/uso terapéutico , Oxígeno , Hipoxia
14.
J Environ Manage ; 358: 120883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631167

RESUMEN

Applying organic fertilizer is the main way to enhance soil fertility through the interfacial reaction between mineral and dissolved organic matter (DOM). However, the interfacial reaction between minerals and DOM may influence antimony(V) (Sb(V)) mobility in agricultural soils around antimony mines. In our study the ferrihydrite (Fh) was chosen as a representative mineral, to reveal the effect of its interaction with chicken manure organic fertilizer (CM-DOM) with Fh on Sb(V) migration. In this study, we investigated different organic matter molecular weights and C/Fe molar ratios. Our findings indicated that the addition of CM-DOM decreased the adsorption of Sb(V) by Fh and promoted the re-release of Sb(V) adsorbed on Fh. This effect was enhanced by increasing the C/Fe molar ratio. Fh mainly affects its interaction with Sb(V) through electrostatic gravitational interaction and ligand exchange, but the presence of CM-DOM weakens the electrostatic interaction between Fh and Sb(V) as well as competes with Sb(V) for the hydroxyl reactive site on Fh surface. In addition, the smaller molecular weight fraction (<10 kDa) of CM-DOM has higher aromaticity and hydrophobicity, which potentially leads to more intense competition with Sb(V) for the reaction sites on Fh. Therefore, the application of organic fertilizer may promote Sb(V) migration, posing significant risks to soil ecosystems and human health, which should be a concern in field soil cultivation.


Asunto(s)
Antimonio , Pollos , Estiércol , Antimonio/química , Adsorción , Animales , Compuestos Férricos/química , Peso Molecular , Suelo/química , Contaminantes del Suelo/química , Fertilizantes
15.
J Environ Sci (China) ; 139: 217-225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105049

RESUMEN

Hexavalent chromium [Cr(VI)] causes serious harm to the environment due to its high toxicity, solubility, and mobility. Ferrihydrites (Fh) are the main adsorbent and trapping agent of Cr(VI) in soils and aquifers, and they usually coexist with silicate (Si), forming Si-containing ferrihydrite (Si-Fh) mixtures. However, the mechanism of Cr(VI) retention by Si-Fh mixtures is poorly understood. In this study, the behaviors and mechanisms of Cr(VI) adsorption onto Si-Fh with different Si/Fe molar ratios was investigated. Transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and other techniques were used to characterize Si-Fh and Cr(VI)-loading of Si-Fh. The results show that specific surface area of Si-Fh increases gradually with increasing Si/Fe ratios, but Cr(VI) adsorption on Si-Fh decreases with increasing Si/Fe ratios. This is because with an increase in Si/Fe molar ratio, the point of zero charge of Si-Fh gradually decreases and electrostatic repulsion between Si-Fh and Cr(VI) increases. However, the complexation of Cr(VI) is enhanced due to the increase in adsorbed hydroxyl (A-OH-) on Si-Fh with increasing Si/Fe molar ratio, which partly counteracts the effect of the electrostatic repulsion. Overall, the increase in the electrostatic repulsion has a greater impact on adsorption than the additional complexation with Si-Fh. Density functional theory calculation further supports this observation, showing the increases in electron variation of bonding atoms and reaction energies of inner spherical complexes with the increase in Si/Fe ratio.


Asunto(s)
Cromo , Compuestos Férricos , Compuestos Férricos/química , Cromo/química , Silicatos , Adsorción
16.
J Environ Sci (China) ; 139: 267-280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105054

RESUMEN

The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/análisis , Adsorción , Contaminantes Químicos del Agua/análisis , Carbón Orgánico
17.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105051

RESUMEN

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Asunto(s)
Compuestos Férricos , Lignina , Oxidación-Reducción , Compuestos Férricos/química , Minerales/química , Suelo , Compuestos Ferrosos
18.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36853045

RESUMEN

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Asunto(s)
Arsénico , Geobacter , Compuestos Férricos/metabolismo , Antimonio , Arsénico/metabolismo , Minerales/metabolismo , Óxido Ferrosoférrico/metabolismo , Geobacter/metabolismo , Oxidación-Reducción
19.
Environ Sci Technol ; 57(10): 4219-4230, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848599

RESUMEN

The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO43-) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P-FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P (≡(FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.


Asunto(s)
Calcio , Fósforo , Adsorción , Electricidad Estática , Coloides/química , Porosidad
20.
Environ Sci Technol ; 57(27): 10008-10018, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37364169

RESUMEN

Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/química , Suelo , Espectroscopía de Mossbauer , Oxidación-Reducción , Minerales/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda