Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biopolymers ; 113(9): e23520, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35751883

RESUMEN

The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.


Asunto(s)
Lignina , Hidrólisis , Lignina/química
2.
Molecules ; 27(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744916

RESUMEN

Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10−30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Adhesión Celular , Proliferación Celular , Humanos , Poliésteres/farmacología , Textiles , Andamios del Tejido/química
3.
J Environ Manage ; 241: 1-11, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978564

RESUMEN

Refining is the major process of paper formation. This study focuses on the impact of a specific enzyme (Paenibacillus cellulase) for fibers on the surfaces, the roughness and height of the fibers are also investigated. Effects of enzyme dosages and the mechanical refining action (PFI revolution) on fiber physical properties were also analyzed. The fibers were observed by scanning electron microscopy (SEM), their roughness and height were analyzed by Atomic force microscopy (AFM). Results show that the Paenibacillus cellulase pretreatment increased the drainability of both kinds of pulp at the same level of refining energy. In other words, enzymatic treatment on pulp refining consumed less refining revolutions to reach the same drainability compared to the untreated pulp. Although the viscosity of both kinds of pulp was degraded with the enzymatic treatment, the physical properties of paper had no significantly negative influence on them. The results indicated the treatment with cellulase swelled the fibers in the absence of refining, and there were better fibrillation on the fibers treated with cellulase after refining. Furthermore, the statistical analysis of AFM suggested that both kinds of pulp treated with low cellulase dosage with PFI refining had higher roughness.


Asunto(s)
Celulasa , Paenibacillus , Carbohidratos , Fibras de la Dieta , Papel
4.
Cellulose (Lond) ; 25(9): 5297-5307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174375

RESUMEN

ABSTRACT: Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers.

5.
Polymers (Basel) ; 16(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125163

RESUMEN

This paper presents the development, characterization, and testing of PP/PE-g-MA composites with 10 and 15 wt% surface-modified aramid fibers, and aluminum-based pigment, as covers for a small drone body for collision protection. The successful fiber surface modification with SiO2 by the sol-gel method using TEOS was confirmed by FTIR, SEM, and EDS analyses. The composites were characterized by FTIR and SEM analyses and surface energy and water contact angle measurements and tested in terms of tensile, flexural, impact, and thermal properties. The materials exhibited hydrophobic character and compact and uniform morphostructures, with increased surface energy with fiber content owed to improved adhesion between modified fibers and the matrix. Compared to the control sample, composites with modified fibers showed an increase by 20% in tensile strength, and 36-52% in the modulus, and an increase by 26-33% in flexural strength and 30-47% in the modulus, with higher values at room temperature. Impact resistance of modified fiber composites showed an increase by 20-40% compared to the control sample, due to improved interaction between SiO2-modified fibers and maleic anhydride, which inhibits crack formation, allowing higher energies' absorption. The composites were vacuum-thermoformed on 3D-printed molds as a two-part cover for the body of a drone, successfully withstanding the flight test.

6.
Int J Biol Macromol ; 227: 1078-1088, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464182

RESUMEN

The development of antibacterial cotton fabrics with an overall performance is critical but remains challenging. In this study, we propose a facile method to prepare durable antibacterial cotton fabric without significant sacrifices of wearing comfortability. Cotton fabric is firstly oxidated to obtain dialdehyde groups, then treated with PM molecules to establish a PM coating on the fiber surfaces via Schiff base linkages. The resultant cotton fabrics show durably antibacterial activity, realizing high bacterial reduction rates against both E. coli and S. aureus higher than 99.99 %, and offering remarkable durabilities tolerable 50 washing cycles and 500 rubbing times. These fabrics also show reliable safety for human skin that proofed by a series of cytotoxicity tests with positive results. This work demonstrates an example of versatile strategy to impart effective antibacterial function with durable activity to cotton textiles, showing great potential for practical applications in functional textile fields.


Asunto(s)
Fibra de Algodón , Escherichia coli , Humanos , Staphylococcus aureus , Protaminas , Bases de Schiff , Textiles , Antibacterianos/farmacología
7.
ACS Appl Mater Interfaces ; 14(3): 4699-4713, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35015495

RESUMEN

The ultimate properties of carbon fibers and their composites are largely dictated by the surface topography of the fibers and the interface characteristics, which are primarily influenced by the surface distribution of chemical functionalities and their interactions with the matrix resin. Nevertheless, nanoscale insights on the carbon fiber surface in relationship with its chemical modification are still rarely addressed. Here, we demonstrate a critical insight on the nanoscale surface topography characterization of modified novel carbon fibers using high-resolution atomic force microscopy at multiple length scales. We compare the nanoscale surface characteristics relevant to their role in controlling interfacial interactions for carbon fibers manufactured at two different tensions and two distinct chemically functionalized coatings. We used surface dimple (also known as nanopores) profiling, microroughness analysis, power spectral density analysis, and adhesion and electrostatic potential mapping to reveal the fine details of surface characteristics at different length scales. This analysis demonstrates that the carbon fibers processed at lower tension possess a higher fractal dimension with a more corrugated surface and higher surface roughness, which leads to increased surface adhesion and energy dissipation across nano- and microscales. Furthermore, electrochemical surface modification with amine- and fluoro-functional groups significantly masks the microroughness inherent to these fibers. This results in increased fractal dimension and decreased energy dissipation and adhesion due to the high chemical reactivity in the areas of asperities and surface defects combined with a significant increase in the surface potential, as revealed by Kelvin probe mapping. These local surface properties of carbon fibers are crucial for designing next-generation fiber composites with predictable interfacial strength and the overall mechanical performance by considering the fiber surface topography for proper control of interphase formation.

8.
ACS Appl Mater Interfaces ; 14(13): 15678-15686, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321545

RESUMEN

Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Nanofibras/química , Platino (Metal)
9.
Materials (Basel) ; 15(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234168

RESUMEN

This paper conducts a thorough review of the literature on the feasibility and current state-of-the-art incorporation of basalt fiber (BF) into asphalt pavement materials, focusing on fiber characteristics, dosage, incorporation methods, mixture properties, and surface modification techniques. The optimum basalt fiber dosage should be determined based on engineering performance parameters such as asphalt type, fatigue cracking, thermal cracking, rutting, and moisture resistance of asphalt mixtures. Basalt fibers are added to asphalt mixes by dry method or mixed method to achieve better dispersion. Adding BF to asphalt mixtures increased performance characteristics like cracking resistance, rutting resistance, and fatigue resistance. Overall, incorporating BF into asphalt mixtures would lower costs while increasing pavement service life. More research is needed to fully understand the effects of different sizes of BF on pavement performance and the possible environmental and economic repercussions of fiber surface alteration.

10.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35012232

RESUMEN

Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell-scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell-scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell-scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell-scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell-scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.

11.
Materials (Basel) ; 15(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35161031

RESUMEN

Aiming at the problems of poor bonding between the carbon fiber and the metal matrix and the friction and wear performance of the composite material during the preparation of carbon fiber reinforced zinc-based aluminum rich alloy composites, the carbon fiber surface metallization process was studied. Taking ZA27 as the research object, a new type of zinc-based aluminum rich alloy composite material was prepared by using surface metallized chopped carbon fibers with different contents as reinforcement materials. The microscopic morphology, element distribution and phase composition of the surface metallized carbon fiber and composite materials were characterized, and the hardness and friction and wear properties of the composite materials were tested. The results show that: the surface metallization of carbon fiber effectively reduces the diffusion of carbon elements into the matrix material during the sintering process, and improves the interface bonding between the carbon fiber and the matrix material; Compared with ZA27 alloy, the hardness of 6vt% carbon fiber is increased by 29.6%, and the average friction coefficient and wear rate are reduced by about 18.4% and 96%, respectively, indicating that the carbon fiber reinforced zinc-based aluminum rich alloy composite material optimizes the friction and wear performance of traditional materials.

12.
Polymers (Basel) ; 13(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641246

RESUMEN

Natural lignocellulose fibers have been extensively investigated and applied as a reinforcement of polymer composites in industrial applications from food packing to automotive parts. Among the advantages of natural fibers stands their relatively low cost and sustainable characteristics. These are accentuated in the case of residual fibers such as those obtained from coffee husks, an agribusiness waste, usually burnt or disposed into the environment. As composite reinforcement, hydrophilic natural fibers display adhesion problems to the most hydrophobic polymer matrices. This adhesion might be improved with distinct types of fibers surface treatments. In the present work, the effectiveness of three surface treatments applied to coffee husk fiber wastes (CHFW) were investigated, aiming to improve the tensile performance of castor oil-based polyurethane (COPU) biocomposites. The effects of treatments associated with (i) chemical with sodium hydroxide, (ii) physical by temperature and pressure and hydrothermic treatment, and (iii) biological by fermentation with Phanerochaete Chrysosporium fungus were evaluated by means of Fourier transformed infrared spectroscopy, X-ray diffraction, thermal analyses and morphology by scanning electron microscopy for different concentration of NaOH, different hydrothermic times at 121 °C/98 kPa and exposition to P. chrysosporium. The most effective treatment was the hydrothermal one at 121 °C and 98.06 kPa for 30 min. Preliminary tensile tests were performed in COPU biocomposites reinforced with 20% CHFWs subjected to the optimized conditions for each distinct type of treatment. The results indicated that the hydrothermal treatment promoted significant enhancement in the fiber/matrix interfacial bond, increasing the tensile strength up to 60% compared to COPU reinforced with in natura CHFWs fibers. It is important to mention that these composites can be applied as plastic wood for household items' internal parts and in the automobile industry.

13.
Data Brief ; 35: 106847, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33665248

RESUMEN

The data presented in this study are the supplementary materials related to the research paper "Determining the Surface Properties of Carbon Fiber in Contact Interaction with Polymeric Binders" (Voronina S.Yu. et al., 2018). The carbon fiber wettability properties before and after heat treatment and the coupling agent IR analysis results are presented. The coupling agent composition affects the fiber wettability and the capillary rise. The polymer binder impregnation rate drives the manufacturing process and the final composite quality. The data would be useful for researchers who study the interphase properties in composites and may help with determining the efficiency of applying certain polymers for wetting carbon fabrics.

14.
Polymers (Basel) ; 11(9)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484316

RESUMEN

A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. The TENG with 2/1 twill-woven cotton textiles exhibited higher output voltages compared to that with plain-woven cotton textiles. The difference in the output voltage between the two types of TENGs resulted from the difference in triboelectric charge generation between the constituent cotton textiles. The higher output voltage of the TENG with 2/1 twill-woven cotton textiles was attributed to the higher density in triboelectric interactions among the cotton fiber molecules.

15.
Polymers (Basel) ; 10(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30966436

RESUMEN

In this study, polylactide acid (PLA) is filled with bamboo fibers (BFs) to fabricate a biodegradable natural composite for industrial applications. The influence of pre-treatment of BFs using 4 wt % sodium hydroxide (NaOH) solution at room temperature for 1 h on thermal and mechanical properties of resultant composites is systematically investigated. Differential scanning calorimetry and thermogravimetric analysis demonstrate that the incorporation of treated BFs promotes higher glass transition and crystallization temperatures of the resultant composites relative to untreated fiber composites, whereas alkali treatment results in superior thermal stability. Furthermore, the fracture surfaces are characterized by scanning electron microscopy. The changes in morphology reveal the possible dissolution of hemicellulose and lignin by alkalization with NaOH, indicative of an improved interfacial adhesion. An increment in the tensile strength of composites is achieved through the reinforcement with treated fibers. However, a lower tensile modulus is found for composites reinforced with chemically modified BFs, which might be due to the partial conversion of cellulose I into II. The results highlight that the use of BFs could be a feasible candidate as reinforcements for the development of biodegradable composites.

16.
J Hazard Mater ; 357: 40-52, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29860104

RESUMEN

As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda