RESUMEN
INTRODUCTION: Long-term motor skill training has been shown to induce anatomical and functional neuroplasticity. World class gymnasts (WCGs) provide a unique opportunity to investigate the effect of long-term intensive training on neuroplasticity. Previous resting-state fMRI studies have demonstrated a high efficient information processing related to motor and cognitive functions in gymnasts compared with healthy controls (HCs). However, most research treated brain signals as static, overlooking the fact that the brain is a complex and dynamic system. In this study, we employed functional stability, a new metric based on dynamic functional connectivity (FC), to examine the impact of long-term intensive training on the functional architecture in the WCGs. METHODS: We first conducted a voxel-wise analysis of functional stability between the WCGs and HCs. Then, we applied FC density (FCD) to explore whether regions with modified functional stability were also accompanied by changes in connection patterns in the WCGs. We identified overlapping regions showing significant differences in both functional stability and FCD. Finally, we applied seed-based correlation analysis (SCA) to determine the detailed changes in connection patterns between the WCGs and HCs within these overlapping regions. RESULTS: Compared with the HCs, the WCGs exhibited higher functional stability in the bilateral angular gyrus (AG), bilateral inferior temporal gyrus (ITG), bilateral precentral gyrus, and right superior frontal gyrus and lower functional stability in the bilateral hippocampus, bilateral caudate, right rolandic operculum, left superior temporal gyrus, right middle frontal gyrus, right middle cingular cortex, and right precuneus than the HCs. We found that the bilateral AG and ITG not only showed higher functional stability but also increased global and long-range FCD in the WCGs relative to the HCs. The right precuneus displayed lower functional stability as well as decreased local, long-range, and global FCD in the WCGs. Both AG and ITG showed higher FC with regions in the default mode network (DMN) in the WCGs than in the HCs. CONCLUSIONS: The increased functional stability in the AG and ITG might be associated with enhanced functional integration within the DMN in the WCGs. These findings may offer new spatiotemporal evidence for the impact of long-term intensive training on neuroplasticity.
Asunto(s)
Gimnasia , Imagen por Resonancia Magnética , Plasticidad Neuronal , Humanos , Gimnasia/fisiología , Plasticidad Neuronal/fisiología , Masculino , Femenino , Adolescente , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Destreza Motora/fisiología , Lóbulo Parietal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Mapeo Encefálico/métodosRESUMEN
Background: Premenstrual syndrome (PMS) is a menstrual-related disorder, characterized by physical, emotional, behavioral and cognitive symptoms. However, the neuropathological mechanisms of PMS remain unclear. This study aimed to investigate the frequency-specific functional connectivity density (FCD) and structural covariance in PMS. Methods: Functional and T1-weighted structural data were obtained from 35 PMS patients and 36 healthy controls (HCs). This study was a cross-sectional and prospective design. The local/long-range FCD (LFCD/LRFCD) across slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands were computed, and two-way analysis of variance (ANOVA) was performed to ascertain the main effects of group and interaction effects between group and frequency band. Receiver operating characteristic (ROC) curve was performed to investigate reliable biomarkers for identifying PMS from HCs. Based on the ROC results, characterized the changes of whole-brain structural covariance patterns of striatum subregions in two groups. Correlation analysis was applied to examine relationships between the clinical symptoms and abnormal brain regions. Results: Compared with HCs, PMS patients exhibited: (I) aberrant functional communication in the middle cingulate cortex and precentral gyrus; (II) significant frequency band-by-group interaction effects of the striatum, thalamus and orbitofrontal cortex; (III) the better classification ability of the LFCD in the striatum in ROC analysis (slow-5); (IV) decreased gray matter volumes in the caudate subregions and decreased structural associations of between the caudate subregions and frontal cortex; (V) the LFCD value in thalamus were significantly negatively correlated with the sleep problems (slow-5). Conclusions: Based on multi-modal magnetic resonance imaging (MRI) analysis, this study might imply the aberrant emotional regulation and cognitive function related to menstrual cycle in PMS and improve our understanding of the pathophysiologic mechanism in PMS from novel perspective.
RESUMEN
(1) Background: Alzheimer's disease (AD), an age-progressive neurodegenerative disease that affects cognitive function, causes changes in the functional connectivity of the default-mode network (DMN). However, the question of whether AD-related changes occur in the functional connectivity of the basal ganglia has rarely been specifically analyzed. This study aimed to measure the changes in basal ganglia functional connectivity among patients with AD and mild cognitive impairment (MCI) in their resting state using the functional connectivity density (FCD) value, the functional connectivity (FC) intensity, and the graph theory index, and to confirm their influence on clinical manifestations. (2) Methods: Resting-state functional MRI (rs-fMRI) and neuropsychological data from 48 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) were used for analyses. The 48 ADNI participants comprised 16 patients with AD, 16 patients with MCI, and 16 normal controls (NCs). The functional connectivity of basal ganglia was evaluated by FCDs, FC strength, and graph theory index. We compared voxel-based FCD values between groups to show specific regions with significant variation and significant connectivity from ROI conduction to ROI analysis. Pearson's correlation analyses between functional connectivity and several simultaneous clinical variables were also conducted. Additionally, receiver operating characteristic (ROC) analyses associated with classification were conducted for both FCD values and graph theory indices. (3) Results: The level of FCD in patients with cognitive impairment showed obvious abnormalities (including short-range and long-range FCD). In addition to DMN-related regions, aberrant functional connectivity was also found to be present in the basal ganglia, especially in the caudate and amygdala. The FCD values of the basal ganglia (involving the caudate and amygdala) were closely related to scores from the Mini-Mental State Examination (MMSE) and the Functional Activities Questionnaire (FAQ); meanwhile, the graph theory indices (involving global efficiency and degree) of the basal ganglia (involving the caudate, amygdala, and putamen) were also found to be closely correlated with MMSE scores. In ROC analyses of both FCD and graph theory, the amygdala was of the utmost importance in the early-stage detection of MCI; additionally, the caudate nucleus was found to be crucial in the progression of cognitive decline and AD diagnosis. (4) Conclusions: It was systematically confirmed that there is a phenomenon of change in the functional connections in the basal ganglia during cognitive decline. The findings of this study could improve our understanding of AD and MCI pathology in the basal ganglia and make it possible to propose new targets for AD treatment in further studies.
RESUMEN
Alcohol use disorder (AUD) is one of the most common substance use disorders contributing to both behavioral and cognitive impairments in patients with AUD. Recent neuroimaging studies point out that AUD is a typical disorder featured by altered functional connectivity. However, the details about how voxel-wise functional coordination remain unknown. Here, we adopted a newly proposed method named functional connectivity density (FCD) to depict altered voxel-wise functional coordination in AUD. The novel functional imaging technique, FCD, provides a comprehensive analytical method for brain's "scale-free" networks. We applied resting-state functional MRI (rs-fMRI) toward subjects to obtain their FCD, including global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD). Sixty-one patients with AUD and 29 healthy controls (HC) were recruited, and patients with AUD were further divided into alcohol-related cognitive impairment group (ARCI, n = 11) and non-cognitive impairment group (AUD-NCI, n = 50). All subjects were asked to stay stationary during the scan in order to calculate the resting-state gFCD, lFCD, and lrFCD values, and further investigate the abnormal connectivity alterations among AUD-NCI, ARCI, and HC. Compared to HC, both AUD groups exhibited significantly altered gFCD in the left inferior occipital lobe, left calcarine, altered lFCD in right lingual, and altered lrFCD in ventromedial frontal gyrus (VMPFC). It is notable that gFCD of the ARCI group was found to be significantly deviated from AUD-NCI and HC in left medial frontal gyrus, which changes probably contributed by the impairment in cognition. In addition, no significant differences in gFCD were found between ARCI and HC in left parahippocampal, while ARCI and HC were profoundly deviated from AUD-NCI, possibly reflecting a compensation of cognition impairment. Further analysis showed that within patients with AUD, gFCD values in left medial frontal gyrus are negatively correlated with MMSE scores, while lFCD values in left inferior occipital lobe are positively related to ADS scores. In conclusion, patients with AUD exhibited significantly altered functional connectivity patterns mainly in several left hemisphere brain regions, while patients with AUD with or without cognitive impairment also demonstrated intergroup FCD differences which correlated with symptom severity, and patients with AUD cognitive impairment would suffer less severe alcohol dependence. This difference in symptom severity probably served as a compensation for cognitive impairment, suggesting a difference in pathological pathways. These findings assisted future AUD studies by providing insight into possible pathological mechanisms.
RESUMEN
BACKGROUND: Alzheimer's disease (AD) is an age-progressive neurodegenerative disorder that affects cognitive function. There have been several functional connectivity (FC) strengths; however, FC density needs more development in AD. Therefore, this study wanted to determine the alternations in resting-state functional connectivity density (FCD) induced by Alzheimer's and mild cognitive impairment (MCI). METHODS: One hundred and eleven AD patients, 29 MCI patients, and 73 healthy controls (age- and sex-matched) were recruited and assessed using resting-state functional magnetic resonance imaging (MRI) scanning. The ultra-fast graph theory called FCD mapping was used to calculate the voxel-wise short- and long-range FCD values of the brain. We performed voxel-based between-group comparisons of FCD values to show the cerebral regions with significant FCD alterations. We performed Pearson's correlation analyses between aberrant functional connectivity densities and several clinical variables with adjustment for age and sex. RESULTS: Patients with cognition decline showed significantly abnormal long-range FCD in the cerebellum crus I, right insula, left inferior frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, and right middle frontal gyrus. The short-range FCD changed in the cerebellum crus I, left inferior frontal gyrus, left superior occipital gyrus, and right middle frontal gyrus. The long- and short-range functional connectivity in the left inferior frontal gyrus was positively correlated with Mini-mental State Examination (MMSE) scores. CONCLUSIONS: FCD in the identified regions reflects mechanism and compensation for loss of cognitive function. These findings could improve the pathology of AD and MCI and supply a neuroimaging marker for AD and MCI.
RESUMEN
Type 1 diabetes mellitus (T1DM) causes cognitive changes in children, which may be due to deï¬cits in brain functions. It is unclear whether T1DM children will have brain functional changes during the initial stage of the disease. We aimed to investigate the changes in the functional brain network topology in children with new-onset T1DM. In this study, 35 new-onset T1DM children and 33 age-, sex-matched healthy controls underwent resting-state fMRI. The whole brain functional connectivity density (FCD) analysis and seed-based functional connectivity (FC) analysis were performed to investigate the changes in functional brain networks in new-onset T1DM children when compared with the controls. Pearson correlational analysis was used to explore the correlation between FCD value of differential brain areas and clinical variables in T1DM children. Compared with the controls, children with new-onset T1DM exhibited significantly decreased FCDs of the right inferior temporal gyrus (ITG) and the right posterior cingulate cortex (PCC). In the subsequent FC analysis, decreased FC was found between right PCC and right cuneus and increased FC was found between right ITG and left orbital part of inferior frontal gyrus in children with new-onset T1DM compared to the controls. The FCD values of right ITG and PCC did not correlate with HbA1c, blood glucose level before imaging, and full-scale intelligence quotient (IQ) in T1DM children. These results revealed that T1DM affect the functional activity of the immature brain at the initial stage. These findings also indicate a decrease in regional brain function and abnormalities in temporal-frontal and limbic-occipital circuitry in children with new-onset T1DM, and highlight the effects of T1DM on children's brain networks involved in visual process and memory, which may contribute to the cognition impairments observed in children with T1DM.
RESUMEN
Modified electroconvulsive therapy (MECT) has been widely applied to help treat schizophrenia patients who are treatment-resistant to pharmaceutical therapy. Although the technique is increasingly prevalent, the underlying neural mechanisms have not been well clarified. We conducted a longitudinal study to investigate the alteration of global functional connectivity density (gFCD) in schizophrenia patients undergoing MECT using resting state fMRI (functional magnetic resonance imaging). Two groups of schizophrenia inpatients were recruited. One group received a four-week MECT together with antipsychotic drugs (ECT+Drug, n=21); the other group only received antipsychotic drugs (Drug, n=21). Both groups were compared to a sample of healthy controls (HC, n=23). fMRI scans were obtained from the schizophrenia patients twice at baseline (t1) and after 4-week treatment (t2), and from healthy controls at baseline. gFCD was computed using resting state fMRI. Repeated ANCOVA showed a significant interaction effect of group×time in the schizophrenia patients in left precuneus (Pcu), ventral medial prefrontal cortex (vMPFC), and dorsal medial prefrontal cortex (dMPFC) (GRF-corrected P<0.05), which are mainly located within the default mode network (DMN). Post-hoc analysis revealed that compared with baseline (t1), an increased gFCD was found in the ECT+Drug group in the dMPFC (t=3.87, p=0.00095), vMPFC (t=3.95, p=0.00079) and left Pcu (t=3.33, p=0.0034), but no significant effect was identified in the Drug group. The results suggested that increased global functional connectivity density within the DMN might be one important neural mechanism of MECT in schizophrenia.
Asunto(s)
Corteza Cerebral/fisiopatología , Conectoma/métodos , Terapia Electroconvulsiva/métodos , Red Nerviosa/fisiopatología , Esquizofrenia/fisiopatología , Esquizofrenia/terapia , Adulto , Antipsicóticos/uso terapéutico , Corteza Cerebral/diagnóstico por imagen , Terapia Combinada , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Resultado del TratamientoRESUMEN
Purpose: Amyotrophic lateral sclerosis (ALS) is a motor neuro-degenerative disorder that also damages extra-motor neural pathways. A significant proportion of existing evidence describe alterations in the strengths of functional connectivity, whereas the changes in the density of these functional connections have not been explored. Therefore, our study seeks to identify ALS-induced alternations in the resting-state functional connectivity density (FCD). Methods: Two groups comprising of 38 ALS patients and 35 healthy participants (age and gender matched) were subjected to the resting-state functional magnetic resonance imaging (MRI) scanning. An ultra-fast graph theory method known as FCD mapping was utilized to calculate the voxel-wise short- and long-range FCD values of the brain for each participant. FCD values of patients and controls were compared based on voxels in order to discern cerebral regions that possessed significant FCD alterations. For areas demonstrating a group effect of atypical FCD in ALS, seed-based functional connectivity analysis was then investigated. Partial correlation analyses were carried out between aberrant FCDs and several clinical variables, controlling for age, gender, and total intracranial volume. Results: Patients with ALS were found to have decreased short-range FCD in the primary motor cortex and increased long-range FCD in the premotor cortex. Extra-motor areas that also displayed extensive FCD alterations encompassed the temporal cortex, insula, cingulate gyrus, occipital cortex, and inferior parietal lobule. Seed-based correlation analysis further demonstrated that these regions also possessed disrupted functional connectivity. However, no significant correlations were identified between aberrant FCDs and clinical variables. Conclusion: FCD changes in the regions identified represent communication deficits and impaired functional brain dynamics, which might underlie the motor, motor control, language, visuoperceptual and high-order cognitive deficits in ALS. These findings support the fact that ALS is a disorder affecting multiple systems. We gain a deeper insight of the neural mechanisms underlying ALS.