Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Infection ; 52(3): 787-800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717734

RESUMEN

PURPOSE: The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS: The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS: In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION: As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.


Asunto(s)
Antibacterianos , Infecciones por Bacterias Grampositivas , Oxazolidinonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Humanos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones de los Tejidos Blandos/microbiología , Animales , Piridonas
2.
Vox Sang ; 118(2): 147-152, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36510386

RESUMEN

BACKGROUND AND OBJECTIVES: Early studies indicate that red cell A and B antigens are attached primarily onto band 3 and GLUT1 on the erythrocyte membrane and little onto glycophorin A (GPA) and glycophorin B (GPB). But as GPA and band 3 form stable protein complexes and GPA is much more heavily glycosylated than band 3, this study re-examined the association between ABO antigens and GPA/GPB. MATERIALS AND METHODS: Band 3/GPA-associated protein complexes were first immunoprecipitated, followed by differential enzymatic deglycosylation that removed sialic acids, N-glycans and O-glycans. Serological anti-A (BIRMA 1) and anti-B IgM (GAMA 110) could be used for western blot (WB); however, only the anti-B IgM showed significant reactivity for the immunoprecipitates isolated by anti-band 3. The expression of the B antigen in un-deglycosylated and differentially deglycosylated band 3 immunoprecipitates was thus compared. RESULTS: Besides attachment to band 3, red cell B antigen expressed substantially on GPA monomer and homodimer, GPA*GPB heterodimer, and GPB monomer and dimer via attachments through the N- and O-glycans. CONCLUSION: Immunoprecipitation (IP), as a means of protein separation and concentration, was used in combination with a WB to differentiate glycosylation on different proteins and oligomers. This study implemented differential enzymatic deglycosylation during IP of the band 3 complexes. This combined approach allowed separate identification of the B antigen on GPA/GPB monomer and dimer and GPA*GPB heterodimer, and band 3 on the WB and verified non-trivial expression of the B antigen on GPA and GPB on the erythrocyte surface.


Asunto(s)
Antígenos de Grupos Sanguíneos , Glicoforinas , Humanos , Glicoforinas/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Eritrocitos , Antígenos de Grupos Sanguíneos/metabolismo , Carbohidratos , Inmunoglobulina M
3.
Transfusion ; 61(10): 2825-2829, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34369596

RESUMEN

BACKGROUND: In this study, we identified a novel glycophorin variant (GP.MOT) in a Mia -positive Japanese blood donor. The proband with this glycophorin variant was discovered by antigen screening of samples from 475,493 Japanese blood donors using monoclonal anti-Mia . STUDY DESIGN AND METHODS: Standard serological techniques and flow cytometry were performed. GP.MOT RBCs were examined by immunoblotting using anti-GPA, anti-MUT or anti-Mur. Genome DNA was extracted from whole blood, and the GYPA/GYPB was analyzed by polymerase chain reactions and Sanger sequencing. RESULTS: The MNS blood group of the proband was M + N + w S-s + with the presence of other low-frequency antigens including Mia , Mur, MUT, and KIPP. A 43-kDa molecule, which is almost equivalent in size to glycophorin A (GPA), was identified by immunoblotting using monoclonal anti-MUT and anti-Mur. Sanger sequencing clearly indicated that the proband had two different GYPA*M alleles at SNP rs62334651 (GYPA*M232 + 55A and GYPA*M232 + 55G), as well as a GYP(B-A) hybrid allele (GYP*MOT) with breakpoints located on pseudoexon 3 of GYPB from c.210 to c.219. DISCUSSION: We identified a hybrid glycophorin GP.MOT with the deduced unique amino acid sequence GPB (20-45)-GPΨB (46-70)-GPA (71-149), which has not been previously reported.


Asunto(s)
Glicoforinas/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Donantes de Sangre , Variación Genética , Humanos , Japón , Sistema del Grupo Sanguíneo MNSs/genética , Análisis de Secuencia de ADN
4.
Cell Tissue Res ; 381(3): 381-396, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32556724

RESUMEN

The central nervous system (CNS) of Drosophila is comprised of the brain and the ventral nerve cord (VNC), which are the homologous structures of the vertebrate brain and the spinal cord, respectively. Neurons of the CNS arise from neural stem cells called neuroblasts (NBs). Each neuroblast gives rise to a specific repertory of cell types whose fate is unknown in most lineages. A combination of spatial and temporal genetic cues defines the fate of each neuron. We studied the origin and specification of a group of peptidergic neurons present in several abdominal segments of the larval VNC that are characterized by the expression of the neuropeptide GPB5, the GPB5-expressing neurons (GPB5-ENs). Our data reveal that the progenitor NB that generates the GPB5-ENs also generates the abdominal leucokinergic neurons (ABLKs) in two different temporal windows. We also show that these two set of neurons share the same axonal projections in larvae and in adults and, as previously suggested, may both function in hydrosaline regulation. Our genetic analysis of potential specification determinants reveals that Klumpfuss (klu) and huckebein (hkb) are involved in the specification of the GPB5 cell fate. Additionally, we show that GPB5-ENs have a role in starvation resistance and longevity; however, their role in desiccation and ionic stress resistance is not as clear. We hypothesize that the neurons arising from the same neuroblast lineage are both architecturally similar and functionally related.


Asunto(s)
Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Ratas
5.
J Cell Mol Med ; 22(6): 3025-3034, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575692

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) has been widely used in the field of allogeneic haematopoietic stem cell transplantation (allo-HSCT) for priming donor stem cells from the bone marrow (BM) to peripheral blood (PB) to collect stem cells more conveniently. Donor-derived natural killer (NK) cells have important antitumour functions and immune regulatory roles post-allo-HSCT. The aim of this study was to evaluate the effect of G-CSF on donors' NK cells in BM and PB. The percentage of NK cells among nuclear cells and lymphocyte was significantly decreased and led to increased ratio of T and NK cells in BM and PB post-G-CSF in vivo application. Relative expansion of CD56bri NK cells led to a decreased ratio of CD56dim and CD56bri NK subsets in BM and PB post-G-CSF in vivo application. The expression of CD62L, CD54, CD94, NKP30 and CXCR4 on NK cells was significantly increased in PB after G-CSF treatment. G-CSF treatment decreased the IFN-γ-secreting NK population (NK1) dramatically in BM and PB, but increased the IL-13-secreting NK (NK2), TGF-ß-secreting NK (NK3) and IL-10-secreting NK (NKr) populations significantly in BM. Clinical data demonstrated that higher doses of NK1 infused into the allograft correlated with an increased incidence of chronic graft-vs-host disease post-transplantation. Taken together, our results show that the in vivo application of G-CSF can modulate NK subpopulations, leading to an increased ratio of T and NK cells and decreased ratio of CD56dim and CD56bri NK cells as well as decreased NK1 populations in both PB and BM.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Enfermedad Injerto contra Huésped/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Asesinas Naturales/efectos de los fármacos , Adolescente , Adulto , Trasplante de Médula Ósea/métodos , Antígeno CD56/genética , Niño , Femenino , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Factor Estimulante de Colonias de Granulocitos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Interferón gamma/genética , Interleucina-13/genética , Células Asesinas Naturales/trasplante , Selectina L/genética , Masculino , Persona de Mediana Edad , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Receptores CXCR4/genética , Trasplante Homólogo/métodos , Adulto Joven
6.
Cell Tissue Res ; 369(2): 313-330, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28401307

RESUMEN

GPA2/GPB5 is a glycoprotein hormone found in most bilateral metazoans including the mosquito, Aedes aegypti. To elucidate physiological roles and functions of GPA2/GPB5, we aim to identify prospective target tissues by examining the tissue- and sex-specific expression profile of its receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1) in the adult mosquito. Western analyses using a heterologous system with CHO-K1 cells, transiently expressing A. aegypti LGR1, yielded a 112-kDa monomeric band and high-molecular weight multimers, which associated with membrane-protein fractions. Moreover, immunoblot analyses on protein isolated from HEK 293 T cells stably expressing a fusion construct of A. aegypti LGR1-EGFP (LGR1: 105 kDa+EGFP: 27 kDa) yielded a band with a measured molecular weight of 139 kDa that also associated with membrane-protein fractions and upon deglycosylation, migrated as a lower molecular weight band of 132 kDa. Immunocytochemical analysis of HEK 293 T cells stably expressing this fusion construct confirmed EGFP fluorescence and LGR1-like immunoreactivity colocalized primarily to the plasma membrane. Immunohistochemical mapping in adult mosquitoes revealed LGR1-like immunoreactivity is widespread in the alimentary canal. Importantly, LGR1-like immunoreactivity localizes specifically to basolateral regions of epithelia and, in some regions, appeared as punctate intracellular staining, which together indicates a potential role in feeding and/or hydromineral balance. LGR1 transcript expression was also detected in gut regions that exhibited strong LGR1-like immunoreactivity. Interestingly, LGR1 transcript expression and strong LGR1-like immunoreactivity was also identified in reproductive tissues including the testes and ovaries, which together suggests a potential role linked to spermatogenesis and oogenesis in male and female mosquitoes, respectively.


Asunto(s)
Aedes/genética , Proteínas de Insectos/genética , Especificidad de Órganos , Receptores de Superficie Celular/genética , Aedes/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Proteínas de Insectos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Transfección
7.
Clin Gastroenterol Hepatol ; 14(6): 903-906.e1, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26707685

RESUMEN

BACKGROUND & AIMS: There is controversy over the use of measuring blood levels of ammonia (NH3) in the management of patients with overt hepatic encephalopathy (HE). METHODS: We performed a retrospective analysis of data from a randomized, double-blind study of 178 patients with cirrhosis given glycerol phenylbutyrate (an NH3-lowering agent) or placebo for 16 weeks. Blood samples were collected at baseline and on study days 7 and 14 and NH3 levels were measured. The probabilities of having an HE episode, based on ammonia values, were modeled using binary logistic regression. A Cox proportional model was used to determine the risk of HE episodes in patients with baseline fasting NH3 levels ≤1.5-fold the upper limit of normal (ULN) versus patients with fasting NH3 levels >1.5-fold the ULN. RESULTS: The risk and frequency of HE episodes and HE-related hospitalizations correlated with baseline (mean, 51 ± 6 µmol/L; ULN, 35 µmol/L) and on-study fasting levels of NH3, and increased sharply at levels >1.5-fold the ULN. Regardless of baseline level, NH3 exposure and the relative risk of HE episodes were decreased by glycerol phenylbutyrate. CONCLUSIONS: In analysis of data from a phase 2 study of the effects of glycerol phenylbutyrate in patients with cirrhosis, we found that fasting levels of NH3 in blood can identify patients at risk for HE-related morbidity. Patients with HE might benefit from NH3-lowering therapy. ClinicalTrials.gov no: NCT 00999167.


Asunto(s)
Amoníaco/sangre , Encefalopatía Hepática/epidemiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Método Doble Ciego , Ayuno , Humanos , Cirrosis Hepática/diagnóstico , Modelos Estadísticos , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , Medición de Riesgo
8.
Biochim Biophys Acta ; 1838(2): 620-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23673272

RESUMEN

This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Espectrina/metabolismo , Animales , Humanos , Canales Iónicos/química , Proteínas de Transporte de Membrana/química , Receptores de Superficie Celular/química
9.
Genomics ; 102(4): 345-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23792713

RESUMEN

GPCRs play crucial roles in the growth, development and reproduction of organisms. In insects, a large number of GPCRs have been reported for Holometabola but not Hemimetabola. The recently sequenced pea aphid genome provides us with the opportunity to analyze the evolution and potential functions of GPCRs in Hemimetabola. 82 GPCRs were identified from the representative model hemimetabolous insect Acyrthosiphon pisum, 37 of which have ESTs evidence, and 73 are annotated for the first time. A striking difference between A. pisum, Drosophila melanogaster and Tribolium castaneum is the duplication of the kinin and SIFamide receptors in A. pisum. Another divergence is the loss of the sulfakinin receptor in A. pisum. These duplications/losses are likely involved in the osmoregulation, reproduction and energy metabolism of A. pisum. Moreover, this work will promote functional analyses of GPCRs in A. pisum and may advance new drug target discovery for biological control of the aphid.


Asunto(s)
Áfidos/genética , Proteínas de Insectos/genética , Pisum sativum/parasitología , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Animales , Áfidos/metabolismo , Secuencia de Bases , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Etiquetas de Secuencia Expresada , Duplicación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Tribolium/genética , Tribolium/metabolismo
10.
Biochimie ; 216: 3-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820991

RESUMEN

Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated. Experiments using anti-GPA/GPB antibodies and a GPA-specific epitope nanobody to block HlyA-GP binding on hRBCs, showed no effect on hemolytic activity. Similarly, the hemolysis induced by HlyA remained unaffected when hRBCs from a GPAnull/GPBnull variant were used. Surface Plasmon Resonance experiments revealed similar values of the dissociation constant between GPA and either HlyA, ProHlyA (inactive protoxin), HlyAΔ914-936 (mutant of HlyA lacking the binding domain to GPA) or human serum albumin, indicating that the binding between the proteins and GPA is not specific. Although far Western blot followed by mass spectroscopy analyses suggested that HlyA interacts with Band 3 and spectrins, hemolytic experiments on spectrin-depleted hRBCs and spherocytes, indicated these proteins do not mediate the hemolytic process. Our results unequivocally demonstrate that neither glycophorins, nor Band 3 and spectrins mediate the cytotoxic activity of HlyA on hRBCs, thereby challenging the HlyA-receptor hypothesis. This finding holds significant relevance for the design of anti-toxin therapeutic strategies, particularly in light of the growing antibiotic resistance exhibited by bacteria.


Asunto(s)
Proteínas de Escherichia coli , Toxinas Biológicas , Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de la Membrana/metabolismo , Glicoforinas/metabolismo , Glicoforinas/farmacología , Hemólisis , Eritrocitos/metabolismo , Toxinas Biológicas/metabolismo
11.
Mol Genet Metab ; 110(4): 446-53, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24144944

RESUMEN

BACKGROUND: Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100). Both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥ 500 µg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. METHODS: The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients of ≥ 2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. RESULTS: Only 0.2% (11) of 4683 samples exceeded 500 µg/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio>2.5 (both in µg/mL) in a random blood draw identified patients at risk for PAA levels>500 µg/ml. CONCLUSIONS: The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker.


Asunto(s)
Glutamina/análogos & derivados , Encefalopatía Hepática/sangre , Fenilacetatos/sangre , Trastornos Innatos del Ciclo de la Urea/sangre , Biomarcadores/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Glutamina/administración & dosificación , Glutamina/sangre , Glicerol/administración & dosificación , Glicerol/análogos & derivados , Encefalopatía Hepática/etiología , Encefalopatía Hepática/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Fenilacetatos/administración & dosificación , Fenilbutiratos/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Trastornos Innatos del Ciclo de la Urea/epidemiología , Trastornos Innatos del Ciclo de la Urea/etiología , Trastornos Innatos del Ciclo de la Urea/patología
12.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687493

RESUMEN

In this study, novel V2O5-decorated garlic peel biochar (VO/GPB) nanocomposites are prepared via the facile hydrothermal technique. As-synthesized VO/GPB is characterized by various spectroscopic and analytical techniques. The surface morphology of the as-prepared samples was predicted by SEM analysis, which shows that the block-like V2O5 was uniformly decorated on the stone-like GPB surface. The elemental mapping analysis confirms the VO/GPB composite is composed of the following elements: C, O, Na, Mg, Si, P, K, and V, without any other impurities. The photocatalytic activity of the VO/GPB nanocomposite was examined by the degradation of methyl orange (MO) under the irradiation of visible light; 84% degradation efficiency was achieved within 30 min. The reactive oxidative species (ROS) study reveals that hydroxyl and superoxide radicals play an essential role in MO degradation. Moreover, the antioxidant action of the VO/GPB nanocomposite was also investigated. From the results, the VO/GPB composite has higher antioxidant activity compared to ascorbic acid; the scavenging effect increased with increasing concentrations of VO/GPB composite until it reached 40 mg/L, where the scavenging effect was the highest at 93.86%. This study will afford innovative insights into other photocatalytic nanomaterials with effective applications in the field of photocatalytic studies with environmental compensation.

13.
Int J Biol Macromol ; 229: 401-412, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36592853

RESUMEN

The glycoprotein hormone (GPH) system is fundamentally significant in regulating the physiology of chordates, such as thyroid activity and gonadal function. However, the knowledge of the GPH system in the primitive chordate ascidian species is largely lacking. Here, we reported an ancestral GPH system in the ascidian (Styela clava), which consists of GPH α subunit (Sc-GPA2), GPH ß subunit (Sc-GPB5), and the cognate leucine-rich repeat-containing G protein-coupled receptor (Sc-GPHR). Comparative structure analysis revealed that distinct from vertebrate GPH ß subunits, Sc-GPB5 was less conserved, showing an atypical N-terminal sequence with a type II transmembrane domain instead of a typical signal peptide. By investigating the presence of recombinant Sc-GPA2 and Sc-GPB5 in cell lysates and culture media of HEK293T cells, we confirmed that these two subunits could be secreted out of the cells via distinct secretory pathways. The deglycosylation experiments demonstrated that N-linked glycosylation only occurred on the conserved cysteine residue (N78) of Sc-GPA2, whereas Sc-GPB5 was non-glycosylated. Although Sc-GPB5 exhibited distinct topology and biochemical properties in contrast to its chordate counterparts, it could still interact with Sc-GPA2 to form a heterodimer. The Sc-GPHR was then confirmed to be activated by tethered Sc-GPA2/GPB5 heterodimer on the Gs-cAMP pathway, suggesting that Sc-GPA2/GPB5 heterodimer-initiated Gs-cAMP signaling pathway is evolutionarily conserved in chordates. Furthermore, in situ hybridization and RT-PCR results revealed the co-expression patterns of Sc-GPA2 and Sc-GPB5 with Sc-GPHR transcripts, respectively in ascidian larvae and adults, highlighting the potential functions of Sc-GPA2/GPB5 heterodimer as an autocrine/paracrine neurohormone in regulating metamorphosis of larvae and physiological functions of adults. Our study systematically investigated the GPA2/GPB5-GPHR system in ascidian for the first time, which offers insights into understanding the function and evolution of the GPH system within the chordate lineage.


Asunto(s)
Cordados , Urocordados , Humanos , Animales , Cordados/genética , Cordados/metabolismo , Urocordados/genética , Urocordados/metabolismo , Células HEK293 , Secuencia de Aminoácidos , Glicoproteínas/química , Hormonas Glicoproteicas de Subunidad alfa/química
14.
Front Endocrinol (Lausanne) ; 13: 823818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399936

RESUMEN

In vertebrate reproduction, metabolism, growth and development, essential roles are played by glycoprotein hormones, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH), all of which are heterodimers consisting of two subunits, a structurally identical alpha subunit, and a variable beta subunit, which provides specificity. A 'new' glycoprotein hormone heterodimer identified in both vertebrates and invertebrates, including decapod crustaceans, was shown to be composed of the glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5) subunits. The putative receptor for GPA2/GPB5 in invertebrates is the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1). In this study in the giant freshwater prawn, Macrobrachium rosenbergii, we identified and characterized the GPA2 (MrGPA2), GPB5 (MrGPB5) and LGR1 (MrLGR1) encoding genes and revealed their spatial expression patterns in female animals. Loss-of-function RNA interference (RNAi) experiments in M. rosenbergii females demonstrated a negative correlation between MrGPA2/MrGPB5 silencing and MrLGR1 transcript levels, suggesting a possible ligand-receptor interaction. The relative transcript levels of M. rosenbergii vitellogenin (MrVg) in the hepatopancreas were significantly reduced following MrGPA2/MrGPB5 knockdown. MrLGR1 loss-of-function induced MrVg receptor (MrVgR) transcript levels in the ovary and resulted in significantly larger oocytes in the silenced group compared to the control group. Our results provide insight into the possible role of GPA2/GPB5-LGR1 in female reproduction, as shown by its effect on MrVg and MrVgR expression and on the oocyte development. Here, we suggest that the GPA2/GPB5 heterodimer act as a gonad inhibiting factor in the eyestalk-hepatopancreas-ovary endocrine axis in M. rosenbergii.


Asunto(s)
Decápodos , Glicoproteínas , Hormonas , Secuencia de Aminoácidos , Animales , Decápodos/genética , Femenino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hormonas/genética , Hormonas/metabolismo
15.
J Clin Med ; 11(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36078975

RESUMEN

Background and objectives: Glycerol phenylbutyrate (GPB) has demonstrated safety and efficacy in patients with urea cycle disorders (UCDs) by means of its clinical trial program, but there are limited data in clinical practice. In order to analyze the efficacy and safety of GPB in clinical practice, here we present a national Spanish experience after direct switching from another nitrogen scavenger to GPB. Methods: This observational, retrospective, multicenter study was performed in 48 UCD patients (age 11.7 ± 8.2 years) switching to GPB in 13 centers from nine Spanish regions. Clinical, biochemical, and nutritional data were collected at three different times: prior to GPB introduction, at first follow-up assessment, and after one year of GPB treatment. Number of related adverse effects and hyperammonemic crisis 12 months before and after GPB introduction were recorded. Results: GPB was administered at a 247.8 ± 102.1 mg/kg/day dose, compared to 262.6 ± 126.1 mg/kg/day of previous scavenger (46/48 Na-phenylbutyrate). At first follow-up (79 ± 59 days), a statistically significant reduction in ammonia (from 40.2 ± 17.3 to 32.6 ± 13.9 µmol/L, p < 0.001) and glutamine levels (from 791.4 ± 289.8 to 648.6 ± 247.41 µmol/L, p < 0.001) was observed. After one year of GPB treatment (411 ± 92 days), we observed an improved metabolic control (maintenance of ammonia and glutamine reduction, with improved branched chain amino acids profile), and a reduction in hyperammonemic crisis rate (from 0.3 ± 0.7 to less than 0.1 ± 0.3 crisis/patients/year, p = 0.02) and related adverse effects (RAE, from 0.5 to less than 0.1 RAEs/patients/year p < 0.001). Conclusions: This study demonstrates the safety of direct switching from other nitrogen scavengers to GPB in clinical practice, which improves efficacy, metabolic control, and RAE compared to previous treatments.

16.
Cells ; 11(21)2022 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-36359907

RESUMEN

Anion exchanger-1 (AE1) is the main erythroid Cl-/HCO3- transporter that supports CO2 transport. Glycophorin A (GPA), a component of the AE1 complexes, facilitates AE1 expression and anion transport, but Glycophorin B (GPB) does not. Here, we dissected the structural components of GPA/GPB involved in glycophorin-AE1 trafficking by comparing them with three GPB variants-GPBhead (lacking the transmembrane domain [TMD]), GPBtail (mainly the TMD), and GP.Mur (glycophorin B-A-B hybrid). GPB-derived GP.Mur bears an O-glycopeptide that encompasses the R18 epitope, which is present in GPA but not GPB. By flow cytometry, AE1 expression in the control erythrocytes increased with the GPA-R18 expression; GYP.Mur+/+ erythrocytes bearing both GP.Mur and GPA expressed more R18 epitopes and more AE1 proteins. In contrast, heterologously expressed GPBtail and GPB were predominantly localized in the Golgi apparatus of HEK-293 cells, whereas GBhead was diffuse throughout the cytosol, suggesting that glycophorin transmembrane encoded an ER/Golgi retention signal. AE1 coexpression could reduce the ER/Golgi retention of GPB, but not of GPBtail or GPBhead. Thus, there are forward-trafficking and transmembrane-driven ER/Golgi retention signals encoded in the glycophorin sequences. How the balance between these opposite trafficking signals could affect glycophorin sorting into AE1 complexes and influence erythroid anion transport remains to be explored.


Asunto(s)
Eritrocitos , Glicoforinas , Humanos , Glicoforinas/química , Glicoforinas/metabolismo , Células HEK293 , Eritrocitos/metabolismo , Aparato de Golgi/metabolismo , Aniones/metabolismo
17.
Mol Genet Metab Rep ; 33(Suppl 1): 100916, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36620385

RESUMEN

We report the case of a medically complex African American adult female with ornithine transcarbamylase (OTC) deficiency diagnosed after lifelong protein aversion and new onset of chronic vomiting and abdominal pain with intermittent lethargy and confusion. Symptomatology was crucial to diagnosis as genetic testing did not identify any pathogenic variants in OTC; however, the patient's diagnosis was delayed despite her having longstanding symptoms of a urea cycle disorder (UCD). Her symptoms improved after treatment with a modified protein-restricted diet, long-term nitrogen-scavenger therapy, and supplemental L-citrulline. Adherence to her UCD management regimen remained a challenge due to her underlying frailty and other medical conditions, which included primary renal impairment (further exasperated by type 2 diabetes mellitus) and decreased left-ventricular function. She passed away 3 years after her OTC deficiency diagnosis due to complications of congestive heart failure. Her OTC deficiency did not have a major impact on her final illness, and appropriate OTC deficiency management was provided until the decision was made to withdraw medical care.

18.
Mol Genet Metab Rep ; 33(Suppl 1): 100894, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36620386

RESUMEN

We report on pregnancy management and outcomes in a 27-year-old female patient with ornithine transcarbamylase (OTC) deficiency, the most common inherited enzyme deficiency in the urea cycle. Our patient was diagnosed during childhood after hyperammonemia associated with surgery and steroid treatment and was well-controlled with nitrogen scavenger treatment, low-protein diet, and L-citrulline supplementation. OTC gene sequencing identified a variant of unknown significance that has more recently been classified as likely pathogenic. Women with OTC deficiency are at increased risk of hyperammonemia during pregnancy and the postpartum period, therefore monthly follow up and laboratory assessments are critical in management decision making. Our patient was maintained on glycerol phenylbutyrate, L-citrulline and essential amino acid supplements, along with restricted protein intake during pregnancy. A multidisciplinary approach with the obstetrics, prenatal genetics, high risk obstetric, and anesthesia teams was also necessary for optimal management during pregnancy, throughout labor and delivery, and during the postpartum period. After successful childbirth and discharge, our patient experienced a hyperammonemic crisis related to poor enteral nutrition, and acute management protocols were implemented to stabilize her. For her newborn son, acute hyperammonemia protocols were on standby, and newborn screening and laboratory testing were expedited to assess his risk. He was healthy and did not experience symptoms of concern. In this case report, we emphasize the importance of close collaboration with maternal-fetal medicine team members during and immediately after pregnancy to ensure successful management of a female patient with OTC deficiency and her newborn.

19.
Mol Genet Metab Rep ; 33(Suppl 1): 100906, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36620388

RESUMEN

We report on a family with ornithine transcarbamylase (OTC) deficiency, an X-linked urea cycle disorder, with variable disease severity and tailored management strategies based on each family member's biochemical profile and clinical presentation. Our primary patient is a female monozygotic twin who presented to medical care at 10 months of age with acute liver failure, gastrointestinal symptoms, altered mental status, hypoglycemia, and hyperammonemia. The patient's older brother, known to have hemizygous OTC deficiency, died at 8 months of age from cardiac arrest after complications secondary to his diagnosis. Despite her family history, manifestation of symptoms of heterozygous (partial) OTC deficiency went unrecognized by multiple providers based on misconceptions regarding a female's risk for X-linked disease. Despite barriers related to the family's low socioeconomic status, follow-up care by a multidisciplinary metabolic care team, including moderate protein restriction and nitrogen scavenger therapy, led to positive outcomes for the patient. Her twin sister and mother are also heterozygous for variants in OTC and remain controlled on moderate protein restriction. This case illustrates the importance of genotyping all individuals with genetic risk factors for OTC deficiency and the variability in disease manifestation that necessitates tailored treatment approaches for individuals with partial OTC deficiency.

20.
J Clin Exp Hepatol ; 12(4): 1200-1214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814520

RESUMEN

Hepatic encephalopathy (HE) is one of the reversible complications of chronic liver disease, associated with a higher mortality rate. In current clinical practice, treatment with rifaximin and lactulose/lactitol is the first line of treatment in HE. With the advance in pathophysiology, a new class of ammonia lowering drugs has been revealed to overcome the hurdle and disease burden. The mechanism of the novel agents differs significantly and includes the alteration in intestinal microbiota, intestinal endothelial integrity, oxidative stress, inflammatory markers, and modulation of neurotoxins. Most of the trials have reported promising results in the treatment and prevention of HE with fecal microbiota transplantation, albumin, probiotics, flumazenil, polyethylene glycol, AST-120, glycerol phenylbutyrate, nitazoxanide, branched-chain amino acid, naloxone, and acetyl-l-carnitine. However, their clinical use is limited due to the presence of major drawbacks in their study design, sample size, safety profile, bias, and heterogenicity. This study will discuss the novel therapeutic targets for HE in liver cirrhosis patients with supporting clinical trial data.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda