Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Virol ; 98(2): e0184223, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38179942

RESUMEN

Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.


Asunto(s)
Autofagia , Aparato de Golgi , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Línea Celular , Aparato de Golgi/patología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Replicación Viral
2.
BMC Biol ; 22(1): 84, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610043

RESUMEN

BACKGROUND: Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS: In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS: Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Receptores Odorantes/genética , Vías Secretoras , Drosophila , Cilios , Mamíferos
3.
Cell Mol Life Sci ; 79(4): 199, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35312866

RESUMEN

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.


Asunto(s)
Glicosaminoglicanos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/fisiología , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Aparato de Golgi/patología , Proteínas de la Matriz de Golgi/genética , Células HeLa , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Vías Secretoras/genética , Sulfatos/metabolismo
4.
Traffic ; 20(10): 785-802, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31336000

RESUMEN

The mammalian Golgi apparatus is organized in the form of a ribbon-like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be "unlinked" into isolated stacks to allow progression into mitosis. Here we show that the Golgi-associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK-mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Microtúbulos/metabolismo , División Celular , Fase G2 , Aparato de Golgi/química , Células HeLa , Humanos , MAP Quinasa Quinasa 4/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Tubulina (Proteína)/metabolismo
5.
Biochem Biophys Res Commun ; 527(2): 406-410, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32331836

RESUMEN

The ability to distinguish malignant from indolent prostate cancer cells is critically important for identification of clinically significant prostate cancer to minimize unnecessary overtreatment and sufferings endured by patients who have indolent cancer. Recently, we discovered that loss of giantin function as the primary Golgi targeting site for endoplasmic reticulum-derived transport vesicles in aggressive prostate cancer cells caused a shift of the Golgi localization site of α-mannosidase 1A to 130 KDa Golgi matrix protein (GM130)-65 KDa Golgi reassembly-stacking protein (GRASP65) site resulting in emergence of high mannose N-glycans on trans-Golgi enzymes and cell surface glycoproteins. To extend this observation, we isolated two cell clones (Clone 1 and Clone 2) from high passage LNCaP cells, which exhibited androgen refractory property missing in low passage LNCaP cells, and characterized their malignant property. We have found that comparing to Clone 2, which does not have cell surface high mannose N-glycans and exhibits localization of α-mannosidase 1A at giantin site, Clone 1 displays cell surface high mannose N-glycans, exhibits localization of α-mannosidase 1A at GM130-GRASP65 site, and shows a faster rate of closing the wound in a wound healing assay. The results indicate that Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of cell surface high mannose N-glycans may serve as markers of malignant prostate cancer cells.


Asunto(s)
Autoantígenos/análisis , Aparato de Golgi/patología , Proteínas de la Matriz de Golgi/análisis , Manosa/análisis , Proteínas de la Membrana/análisis , Neoplasias de la Próstata/patología , Biomarcadores de Tumor/análisis , Línea Celular Tumoral , Membrana Celular/patología , Humanos , Masculino , Polisacáridos/análisis
6.
J Cell Sci ; 128(12): 2249-60, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25948586

RESUMEN

In mammalian cells, the Golgi complex is composed of stacks that are connected by membranous tubules. During G2, the Golgi complex is disassembled into isolated stacks. This process is required for entry into mitosis, indicating that the correct inheritance of the organelle is monitored by a 'Golgi mitotic checkpoint'. However, the regulation and the molecular mechanisms underlying this Golgi disassembly are still poorly understood. Here, we show that JNK2 has a crucial role in the G2-specific separation of the Golgi stacks through phosphorylation of Ser277 of the Golgi-stacking protein GRASP65 (also known as GORASP1). Inhibition of JNK2 by RNA interference or by treatment with three unrelated JNK inhibitors causes a potent and persistent cell cycle block in G2. JNK activity becomes dispensable for mitotic entry if the Golgi complex is disassembled by brefeldin A treatment or by GRASP65 depletion. Finally, measurement of the Golgi fluorescence recovery after photobleaching demonstrates that JNK is required for the cleavage of the tubules connecting Golgi stacks. Our findings reveal that a JNK2-GRASP65 signalling axis has a crucial role in coupling Golgi inheritance and G2/M transition.


Asunto(s)
División Celular/fisiología , Fase G2/fisiología , Aparato de Golgi/patología , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Riñón/citología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mitosis/fisiología , Fosforilación , ARN Interferente Pequeño/genética , Ratas
7.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2891-2901, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28782625

RESUMEN

BACKGROUND: There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. METHODS: Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme ß4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man8GlcNAc2 down to Man5GlcNAc2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. RESULTS: Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. CONCLUSION: In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells.


Asunto(s)
Autoantígenos/genética , Biomarcadores de Tumor/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , alfa-Manosidasa/metabolismo , Autoantígenos/metabolismo , Biomarcadores de Tumor/química , Línea Celular Tumoral , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Proteínas de la Matriz de Golgi , Humanos , Masculino , Manosa/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Polisacáridos/biosíntesis , Polisacáridos/química , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Unión Proteica , Transporte de Proteínas/genética , alfa-Manosidasa/química
8.
Bioessays ; 37(3): 240-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546412

RESUMEN

Increased amyloid beta (Aß) production by sequential cleavage of the amyloid precursor protein (APP) by the ß- and γ-secretases contributes to the etiological basis of Alzheimer's disease (AD). This process requires APP and the secretases to be in the same subcellular compartments, such as the endosomes. Since all membrane organelles in the endomembrane system are kinetically and functionally linked, any defects in the trafficking and sorting machinery would be expected to change the functional properties of the whole system. The Golgi is a primary organelle for protein trafficking, sorting and modifications, and Golgi defects have been reported in AD. Here we hypothesize that Golgi fragmentation in AD accelerates APP trafficking and Aß production. Furthermore, Golgi defects may perturb the proper trafficking and processing of many essential neuronal proteins, resulting in compromised neuronal function. Therefore, molecular tools that can restore Golgi structure and function could prove useful as potential drugs for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Aparato de Golgi/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
9.
J Biol Chem ; 290(44): 26373-82, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26363069

RESUMEN

GM130 and GRASP65 are Golgi peripheral membrane proteins that play a key role in Golgi stacking and vesicle tethering. However, the molecular details of their interaction and their structural role as a functional unit remain unclear. Here, we present the crystal structure of the PDZ domains of GRASP65 in complex with the GM130 C-terminal peptide at 1.96-Å resolution. In contrast to previous findings proposing that GM130 interacts with GRASP65 at the PDZ2 domain only, our crystal structure of the complex indicates that GM130 binds to GRASP65 at two distinct sites concurrently and that both the PDZ1 and PDZ2 domains of GRASP65 participate in this molecular interaction. Mutagenesis experiments support these structural observations and demonstrate that they are required for GRASP65-GM130 association.


Asunto(s)
Autoantígenos/química , Proteínas de la Membrana/química , Autoantígenos/genética , Autoantígenos/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/química , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Dominios PDZ , Estructura Cuaternaria de Proteína
10.
Med Mol Morphol ; 49(4): 217-223, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26924201

RESUMEN

This study aimed to investigate the effects of H2O2-induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H2O2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H2O2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H2O2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H2O2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H2O2 treatment, while its role in H2O2-induced Golgi morphological changes may be complex.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Aparato de Golgi/ultraestructura , Peróxido de Hidrógeno/toxicidad , Proteínas de la Membrana/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Factores de Tiempo
11.
Sci Rep ; 14(1): 17845, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090173

RESUMEN

The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.


Asunto(s)
Cognición , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glicosilación , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Ratones , Cognición/efectos de los fármacos , Dopamina/metabolismo , Masculino , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Membrana Celular/metabolismo , Corteza Prefrontal/metabolismo
12.
Front Cell Dev Biol ; 12: 1386149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721528

RESUMEN

The Golgi apparatus plays a crucial role in lysosome biogenesis and the delivery of lysosomal enzymes, essential for maintaining cellular homeostasis and ensuring cell survival. Deficiencies in Golgi structure and function can profoundly impact lysosomal homeostasis, leading to various lysosomal storage diseases and neurodegenerative disorders. In this review, we highlight the role of the Golgi Reassembly Stacking Proteins (GRASPs) in the formation and function of the Golgi apparatus, emphasizing the current understanding of the association between the Golgi apparatus, lysosomes, and lysosomal storage diseases. Additionally, we discuss how Golgi dysfunction leads to the secretion of lysosomal enzymes. This review aims to serve as a concise resource, offering insights into Golgi structure, function, disease-related defects, and their consequential effects on lysosomal biogenesis and function. By highlighting Golgi defects as an underappreciated contributor to lysosomal dysfunction across various diseases, we aim to enhance comprehension of these intricate cellular processes.

13.
Artículo en Inglés | MEDLINE | ID: mdl-23832210

RESUMEN

GRASP65 and GRASP55 were classified as Golgi reassembly stacking proteins which play crucial and complementary roles in the stacking of Golgi cisternae. They also participate in vesicle tethering, mitotic progression, the disassembly and reassembly of the Golgi apparatus during mitosis and unconventional secretory pathway regulation. In this study, the expression, crystallization and preliminary crystallographic analysis of the GRASP65 GRASP domain from Rattus norvegicus are presented. The crystals diffracted to 2.0 Å resolution and belonged to space group P21212, with unit-cell parameters a = 44.99, b = 104.29, c = 37.93 Å, α = ß = γ = 90°. Furthermore, molecular replacement was employed to determine the structure of the GRASP65 GRASP domain from R. norvegicus.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Recombinantes/química , Animales , Cristalización , Cristalografía por Rayos X , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
14.
Methods Mol Biol ; 2557: 391-416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512228

RESUMEN

Stable cell lines that express a gene of specific interest provide an advantage over transient gene expression by reducing variations in transfection efficiency between experiments, sustaining expression for long-term studies, and controlling expression levels in particular if a clonal population is selected. Transient transfection requires introduction of an exogenous gene into host cells via typically harsh chemicals or conditions that permeabilize the cell membrane, which does not normally integrate into the target cell genome. Here, we describe the method of using retroviral transduction to stably express Golgi proteins fused to a promiscuous biotin ligase (TurboID) in HeLa cells, thus creating cell lines that can be leveraged in studies of the proximome/interactome. We also demonstrate a similar protocol for stable expression of a Golgi protein fused to a fluorescent tag via lentiviral transduction. These methods can be further adapted to establish other cell lines with different sub-cellular markers or fusion tags. Viral transduction is a convenient method to create stable cell lines in cell-based studies.


Asunto(s)
Aparato de Golgi , Retroviridae , Humanos , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Transfección , Transducción Genética , Aparato de Golgi/metabolismo
15.
J Biochem ; 173(5): 383-392, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36689741

RESUMEN

Jaw1/LRMP is a membrane protein that is localized to the endoplasmic reticulum and outer nuclear membrane. Previously, we revealed that Jaw1 functions to maintain nuclear shape by interacting with microtubules as a Klarsicht/ANC-1/Syne/homology (KASH) protein. The loss of several KASH proteins causes defects in the position and shape of the Golgi apparatus as well as the nucleus, but the effects of Jaw1 depletion on the Golgi apparatus were poorly understood. Here, we found that siRNA-mediated Jaw1 depletion causes Golgi fragmentation with disordered ribbon structure in the melanoma cell, accompanied by the change in the localization of the Golgi-derived microtubule network. Thus, we suggest that Jaw1 is a novel protein to maintain the Golgi ribbon structure, associated with the microtubule network.


Asunto(s)
Núcleo Celular , Aparato de Golgi , Membrana Nuclear , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos , Membrana Nuclear/metabolismo
16.
Int J Biol Macromol ; 194: 264-275, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861272

RESUMEN

The Golgi complex is an essential organelle of the eukaryotic exocytic pathway. A subfamily of Golgi matrix proteins, called GRASPs, is central in stress-induced unconventional secretion, Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogues and two Golgins (GM130/Golgin45), which form specific GRASP-Golgin pairs. The molecular details of their appearance only in Metazoans are unknown. Moreover, despite new functionalities supported by GRASP paralogy, little is known about their structural and evolutionary differences. Here, we used ancestor sequence reconstruction and biophysical/biochemical approaches to assess the evolution of GRASPs structure/dynamics, fibrillation, and how they started anchoring their Golgin partners. Our data showed that a GRASP ancestor anchored Golgins before gorasp gene duplication in Metazoans. After gene duplication, variations within the GRASP binding pocket determined which paralogue would recruit which Golgin. These interactions are responsible for their specific Golgi location and Golgi ribbon appearance. We also suggest that GRASPs have a long-standing capacity to form supramolecular structures, affecting their participation in stress-induced processes.


Asunto(s)
Aparato de Golgi/fisiología , Proteínas de la Matriz de Golgi/metabolismo , Estrés Fisiológico , Secuencia de Aminoácidos , Proteínas de la Matriz de Golgi/química , Proteínas de la Matriz de Golgi/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Termodinámica
17.
Cells ; 8(12)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847122

RESUMEN

BACKGROUND: The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS: In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS: We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION: Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.


Asunto(s)
Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Brefeldino A/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Inmunoprecipitación , Masculino , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Microscopía Confocal , Neoplasias de la Próstata/metabolismo , Unión Proteica
18.
Front Cell Dev Biol ; 7: 131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31380369

RESUMEN

The Golgi stacking proteins, GRASP55 and GRASP65, are best known for their roles in Golgi structure formation. These peripheral Golgi proteins form trans-oligomers that hold the flat cisternal membranes into stacks. Depletion of both GRASP proteins in cells disrupts the Golgi stack structure, increases protein trafficking, but impairs accurate glycosylation, and sorting. Golgi unstacking by GRASPs depletion also reduces cell adhesion and migration in an integrin-dependent manner. In addition to Golgi structure formation and regulation of cellular activities, GRASPs, in particular GRASP55, have recently drawn attention in their roles in autophagy, and unconventional secretion. In autophagy, GRASP55 senses the energy level by O-GlcNAcylation, which regulates GRASP55 translocation from the Golgi to the autophagosome-lysosome interface, where it interacts with LC3 and LAMP2 to facilitate autophagosome-lysosome fusion. This newly discovered function of GRASP55 in autophagy may help explain its role in the stress-induced, autophagosome-dependent unconventional secretion. In this review, we summarize the emerging functions of the GRASP proteins, focusing on their roles in cell adhesion and migration, autophagy, unconventional secretion, as well as on novel GRASP-interacting proteins.

20.
Front Neurosci ; 9: 340, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441511

RESUMEN

The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aß-induced fragmentation and reduces Aß production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda