Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Appl Microbiol Biotechnol ; 102(22): 9803-9813, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30155752

RESUMEN

Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment.


Asunto(s)
Arsénico/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Ácidos/química , Ácidos/metabolismo , Arsénico/análisis , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Biodiversidad , Hierro/química , Cinética , Minería , Oxidación-Reducción , Factores de Tiempo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
2.
Extremophiles ; 21(2): 235-243, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27933457

RESUMEN

Whether the extreme conditions of acidity and heavy metal pollution of streams and rivers originating in pyritic formations are caused primarily by mining activities or by natural activities of metal-oxidizing microbes living within the geological formations is a subject of considerable controversy. Most microbiological studies of such waters have so far focused on acid mine drainage sites, which are heavily human-impacted environments, so it has been problematic to eliminate the human factor in the question of the origin of the key metal compounds. We have studied the physico-chemistry and microbiology of the Río Sucio in the Braulio Carrillo National Park of Costa Rica, 22 km from its volcanic rock origin. Neither the remote origin, nor the length of the river to the sampling site, have experienced human activity and are thus pristine. The river water had a characteristic brownish-yellow color due to high iron-dominated minerals, was slightly acidic, and rich in chemolithoautotrophic iron- and sulfur-oxidizing bacteria, dominated by Gallionella spp. Río Sucio is thus a natural acid-rock drainage system whose metal-containing components are derived primarily from microbial activities.


Asunto(s)
Crecimiento Quimioautotrófico/fisiología , Gallionellaceae/fisiología , Ríos/microbiología , Microbiología del Agua , Costa Rica , Humanos
3.
Biosci Biotechnol Biochem ; 78(7): 1274-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229870

RESUMEN

Acid rock drainage (ARD) originating from the Yasumi-ishi tunnel near the main tunnel of the Yanahara mine in Japan was characterized to be moderately acidic (pH 4.1) and contained iron at a low concentration (51 mg/L). The composition of the microbial community was determined by sequence analysis of 16S rRNA genes using PCR and denaturing gradient gel electrophoresis. The analysis of the obtained sequences showed their similarity to clones recently detected in other moderately acidic mine drainages. Uncultured bacteria related to Ferrovum- and Gallionella-like clones were dominant in the microbial community. Analyses using specific primers for acidophilic iron- or sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, Leptospirillum spp., Acidithiobacillus caldus, Acidithiobacillus thiooxidans, and Sulfobacillus spp. revealed the absence of these bacteria in the microbial community in ARD from the Yasumi-ishi tunnel. Clones affiliated with a member of the order Thermoplasmatales were detected as the dominant archaea in the ARD microbial population.


Asunto(s)
Hierro , Microbiología , Minería , Sulfuros , Bacterias/genética , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Japón , Filogenia , ARN Ribosómico 16S/genética , Azufre/metabolismo
4.
Braz J Microbiol ; 55(1): 639-646, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214875

RESUMEN

Iron (Fe) is the fourth most abundant element on the planet, and iron-oxidising bacteria (FeOB) play an important role in the biogeochemical cycle of this metal in nature. FeOB stands out as Fe oxidisers in microaerophilic environments, and new members of this group have been increasingly discussed in the literature, even though their isolation can still be challenging. Among these bacteria is the Gallionellaceae family, mainly composed of neutrophilic FeOB, highlighting Gallionella ferruginea, and nitrite-oxidiser genera. In the previous metagenomic study of the biofilm and sediments of the cooling system from the Irapé hydroelectric power plant (HPP-Irapé), 5% of the total bacteria sequences were related to Gallionellaceae, being 99% unclassified at genus level. Thus, in the present study, a phylogenetic tree based on this family was constructed, in order to search for shared and unique Gallionellaceae signatures in a deep phylogenetic level affiliation and correlated them with geomorphologic characteristics. The results revealed that Gallionella and Ferrigenium were ubiquitous reflecting their ability to adapt to various locations in the power plant. The cave was considered a hotspot for neutrophilic FeOB since it harboured most of the Gallionellaceae diversity. Microscopic biosignatures were detected only in the CS1 sample, which presented abundance of the stalk-forming Ferriphaselus and of the sheath-forming Crenothrix. Further studies are required to provide more detailed insights on Gallionellaceae distribution and diversity patterns in hydroelectric power plants, particularly its biotechnological potential in this industry.


Asunto(s)
Gallionellaceae , Gallionellaceae/genética , Filogenia , Hierro , Metales , Metagenómica , Oxidación-Reducción
5.
Water Res ; 262: 122135, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39067270

RESUMEN

Rapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these redox reactions. While effective, intensive aeration promotes flocculent iron removal, which results in iron oxide flocs that rapidly clog the filter. In this study, we operated two parallel full-scale sand filters at different aeration intensities to resolve the relative contribution of homogeneous, heterogeneous and biological iron removal pathways, and identify their operational controls. Our results show that mild aeration in the LOW filter (5 mg/L O2, pH 6.9) promoted biological iron removal and enabled iron oxidation at twice the rate compared to the intensively aerated HIGH filter (>10 mg/L O2, pH 7.4). Microscopy images showed distinctive twisted stalk-like iron solids, the biosignatures of Gallionella ferruginea, both in the LOW filter sand coatings as well as in its backwash solids. In accordance, 10 times higher DNA copy numbers of G. ferruginea were found in the LOW filter effluent. Clogging by biogenic iron solids was slower than by chemical iron flocs, resulting in lower backwash frequencies and yielding four times more water per run. Ultimately, our results reveal that biological iron oxidation can be actively controlled and favoured over competing physico-chemical routes. The production of more compact and practically valuable iron oxide solids is of outmost interest. We conclude that, although counterintuitive, slowing down iron oxidation in the water before filtration enables rapid iron removal in the biofilter.

6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23545645

RESUMEN

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Asunto(s)
GTP Fosfohidrolasas/química , Gallionellaceae/enzimología , Proteínas de la Membrana/química , Multimerización de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
7.
J Hazard Mater ; 459: 132051, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467612

RESUMEN

The uranium inventory in the Boeun aquifer is situated near an artificial reservoir (40-70 m apart) intended to supply water to nearby cities. However, toxic radionuclides can enter the reservoir. To determine the U mobility in the system, we analyzed groundwater and fracture-filling materials (FFMs) for environmental tracers, including microbial signatures, redox-sensitive elements and isotopes. In the site, U mass flux ranged from only 9.59 × 10-7 µg/L/y to 1.70 × 10-4 µg/L/y. The δ18O-H2O and 14C signatures showed that groundwater originated mainly from upland recharges and was not influenced by oxic surface water. We observed U accumulations (∼157 mg/kg) in shallow FFMs and Fe enrichments (∼226798 mg/kg) and anomalies in the 230Th/238U activity ratio (AR), 230Th/234U AR, δ56Fe and δ57Fe isotopes, suggesting that low U mobility in shallow depths is associated with a Fe-rich environment. At shallow depths, anaerobic Fe-oxidizers, Gallionella was prevalent in the groundwater, while Acidovorax was abundant near the U ore deposit depth. The Fe-rich environment at shallow depths was formed by sulfide dissolution, as demonstrated by δ34S-SO4 and δ18O-SO4 distribution. Overall, the Fe-rich aquifer including abundant sulfide minerals immobilizes dissolved U through biotic and abiotic processes, without significant leaching into nearby reservoirs.


Asunto(s)
Agua Subterránea , Uranio , Contaminantes Químicos del Agua , Isótopos , Minerales , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
8.
Environ Technol ; 41(2): 260-266, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29993337

RESUMEN

Biogenic iron oxides (BioFeO) formed by Leptothrix sp. and Gallionella sp. were compared with chemically formed iron oxides (ChFeO) for their suitability to remove and recover phosphate from solutions. The ChFeO used for comparison included a commercial iron-based adsorbent (GEH) and chemically oxidized iron precipitates from groundwater. Despite contrary observations in earlier studies, the batch experiments showed that BioFeO do not have superior phosphate adsorption capacities compared to ChFeO. However, it seems multiple mechanisms are involved in phosphate removal by BioFeO which make their overall phosphate removal capacity higher than that of ChFeO. The overall phosphate removal capacity of Leptothrix sp. deposits was 26.3 mg P/g d.s., which could be attributed to multiple mechanisms. This included adsorption on the solid phase (6.4 mg P/g d.s.) as well as removal via precipitation and/or adsorption onto suspended complexes released from the BioFeO of Leptothrix sp. (19.6 mg P/g d.s.). Only a very small part of phosphorus (0.3 mg P/g d.s.) was retained in the Leptothrix sp. sheats during bacterial growth. Deposits of Gallionella sp. had an overall phosphate removal capacity of 39.6 mg P/g d.s. Significant amounts of phosphate were apparently incorporated into the Gallionella sp. stalks during their growth (31.0 mg P/g d.s.) and only one-fifth of the total phosphate removal can be related to adsorption (8.6 mg P/g d.s.). Their overall ability to immobilize large quantities of phosphate from solutions indicates that BioFeO could play an important role in environmental and engineered systems for removal of contaminants.


Asunto(s)
Leptothrix , Fosfatos , Adsorción , Compuestos Férricos , Concentración de Iones de Hidrógeno , Hierro , Óxidos
9.
Sci Total Environ ; 718: 137140, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32088488

RESUMEN

Rapid deposition of chemical sediments, particularly calcium carbonate, is a widespread phenomenon in tunnel constructions, which can significantly disturb water draining. The removal of the scale deposits in the drainage setting is labor and cost intensive. Prediction or prevention of these unwanted scale deposits are challenging and require detailed knowledge on their site-specific source, formation mechanisms and environmental dependencies. This case study combines a mineralogical, (micro)structural, isotopic, microbiological, and hydrochemical approach to understand the formation of scale deposits in an Austrian motorway tunnel. Chemical and isotopic results revealed that all investigated solutions originate from a distinct local aquifer. High pH (11), indicative high alkaline element concentrations (Na 26 mg/l; K 67 mg/l), originated from concrete leaching, and a strong supersaturation in respect to calcite (SI > 1) are representative for the environmental setting of scaling type 1. This type is characterized by the formation of calcite, aragonite, and rarely documented dypingite (Mg5(CO3)4(OH)2*5H2O), and yields in a highly porous material showing minor indications of microbial presence. In contrast, scale deposits of type 2 are strongly microbially influenced, yielding dense and layered mineral deposits, typically consisting of calcite. The corresponding aqueous solution revealed elevated Mg concentration (38 mg/l) and a high molar Mg/Ca ratio (0.8). Scale deposits containing distinct aragonite precipitates next to calcite, mostly growing in pore spaces of the scale fabric, are accounted as type 3. Therein, dypingite is always growing on top of aragonite needles, indicative for prior CaCO3 precipitation. The composition of corresponding solutions shows the highest Mg/Ca ratio (1.1). Scale type 4 is characterized as a compact deposit consisting entirely of calcite. Its corresponding solution exhibits a molar Mg/Ca ratio of 0.6. From the obtained data sets a conceptual model was developed describing the distinct operative and (micro)environmental conditions responsible for the distinct diversity of scale deposits.

10.
Front Microbiol ; 9: 2808, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559723

RESUMEN

Although earlier circumstantial observations have suggested the presence of iron oxidizing bacteria (IOB) in groundwater-fed rapid sand filters (RSF), ferrous iron (Fe(II)) oxidation in this environment is often considered a chemical process due to the highly oxic and circumneutral pH conditions. The low water temperature (5-10°C), typical of groundwaters, on the other hand, may reduce the rates of chemical Fe(II) oxidation, which may allow IOB to grow and compete with chemical Fe(II) oxidation. Hence, we hypothesized that IOB are active and abundant in groundwater-fed RSFs. Here, we applied a combination of cultivation and molecular approaches to isolate, quantify, and confirm the growth of IOB from groundwater-fed RSFs, operated at different influent Fe(II) concentrations. Isolates related to Undibacterium and Curvibacter were identified as novel IOB lineages. Gallionella spp. were dominant in all waterworks, whereas Ferriphaselus and Undibacterium were dominant at pre-filters of waterworks receiving groundwaters with high (>2 mg/l) Fe(II) concentrations. The high density and diversity of IOB in groundwater-fed RSFs suggest that neutrophilic IOB may not be limited to oxic/anoxic interfaces.

11.
Geobiology ; 15(6): 817-835, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29035022

RESUMEN

Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku-hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO2 -rich, circumneutral hot spring that produces a range of precipitated mineral textures containing fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic phototrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoichiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoautotrophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxidation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be further elucidated. When compared with geological data, the metabolisms and mineralogy at OHK are most similar to specific BIF occurrences deposited after the Great Oxygenation Event, and generally discordant with those that accumulated before it.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Manantiales de Aguas Termales/química , Manantiales de Aguas Termales/microbiología , Hierro/química , Japón , Oxidación-Reducción , Paleontología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
12.
Front Microbiol ; 8: 2446, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29321765

RESUMEN

The Cheb Basin (NW Bohemia, Czech Republic) is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas) and iron (e.g., Gallionella, Sideroxydans) cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.

13.
Front Microbiol ; 7: 2082, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066396

RESUMEN

Bacterial community analyses of samples from a pilot plant for the treatment of acid mine drainage (AMD) from the lignite-mining district in Lusatia (East Germany) had previously demonstrated the dominance of two groups of acidophilic iron oxidizers: the novel candidate genus "Ferrovum" and a group comprising Gallionella-like strains. Since pure culture had proven difficult, previous studies have used genome analyses of co-cultures consisting of "Ferrovum" and a strain of the heterotrophic acidophile Acidiphilium in order to obtain insight into the life style of these novel bacteria. Here we report on attempts to undertake a similar study on Gallionella-like acidophiles from AMD. Isolates belonging to the family Gallionellaceae are still restricted to the microaerophilic and neutrophilic iron oxidizers Sideroxydans and Gallionella. Availability of genomic or metagenomic sequence data of acidophilic strains of these genera should, therefore, be relevant for defining adaptive strategies in pH homeostasis. This is particularly the case since complete genome sequences of the neutrophilic strains G. capsiferriformans ES-2 and S. lithotrophicus ES-1 permit the direct comparison of the metabolic capacity of neutrophilic and acidophilic members of the same genus and, thus, the detection of biochemical features that are specific to acidophilic strains to support life under acidic conditions. Isolation attempts undertaken in this study resulted in the microaerophilic enrichment culture ADE-12-1 which, based on 16S rRNA gene sequence analysis, consisted of at least three to four distinct Gallionellaceae strains that appear to be closely related to the neutrophilic iron oxidizer S. lithotrophicus ES-1. Key hypotheses inferred from the metabolic reconstruction of the metagenomic sequence data of these acidophilic Sideroxydans strains include the putative role of urea hydrolysis, formate oxidation and cyanophycin decarboxylation in pH homeostasis.

14.
Microorganisms ; 3(4): 667-94, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27682111

RESUMEN

Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential novelty in terms of both phylogenetic/taxonomic and functional diversity.

15.
Water Res ; 63: 222-33, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25010562

RESUMEN

Iron rich deposits cause clogging the pumps and pipes of dewatering wells in open-cast mines, interfering with their function; however, little is known about either the microbial community structure or their potential role in the formation of these deposits. The microbial diversity and abundance of iron-oxidizing and -reducing bacteria were compared in pipe deposit samples with different levels of encrustation from 16 wells at three lignite mining sites. The groundwater varied in pH values from slightly acidic (4.5) to neutral (7.3), Fe(II) concentrations from 0.48 to 7.55 mM, oxygen content from 1.8 to 5.8 mg L(-1), and dissolved organic carbon (DOC) from 1.43 to 12.59 mg L(-1). There were high numbers of bacterial 16S rRNA gene copies in deposits, up to 2.5 × 10(10) copies g(-1) wet weight. Pyrosequencing analysis of bacterial 16S rRNA genes revealed that Proteobacteria was the most abundant phylum (63.3% of the total reads on average), followed by Actinobacteria (10.2%) and Chloroflexi (6.4%). Gallionella-related sequences dominated the bacterial community of pipe deposits and accounted for 48% of total sequence reads. Pipe deposits with amorphous ferrihydrite and schwertmannite mostly contained Gallionella (up to 1.51 × 10(10) 16S rRNA gene copies g(-1) wet weight), while more crystalline deposits showed a higher bacterial diversity. Surprisingly, the abundance of Gallionella was not correlated with groundwater pH, oxygen, or DOC content. Sideroxydans-related 16S rRNA gene copy numbers were one order of magnitude less than Gallionella, followed by acidophilic Ferrovum-related groups. Iron reducing bacteria were detected at rather low abundance, as was expected given the low iron reduction potential, although they could be stimulated by lactate amendment. The overall high abundance of Gallionella suggests that microbes may make major contributions to pipe deposit formation irrespective of the water geochemistry. Their iron oxidation activity might initiate the formation of amorphous iron oxides, potentially providing niches for other microorganisms later after crystallization, and leading to higher bacterial diversity along with deposit accumulation in later stages of clogging.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Pozos de Agua/química , Pozos de Agua/microbiología , Bacterias/clasificación , Bacterias/genética , Incrustaciones Biológicas , ADN Bacteriano/genética , Alemania , Minería , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Front Microbiol ; 5: 630, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505456

RESUMEN

Among the neutrophilic iron-oxidizing bacteria (FeOB), Gallionella is one of the most abundant genera in freshwater environments. By applying qPCR and DGGE based on 16S rRNA gene-directed primers targeting Gallionellaceae, we delineated the composition and abundance of the Gallionellaceae-related FeOB community in streams differentially affected by metal mining, and explored the relationships between these community characteristics and environmental variables. The sampling design included streams historically impacted by mining activity and a non-impacted stream. The sediment and water samples harbored a distinct community represented by Gallionella, Sideroxydans, and Thiobacillus species. Sequences affiliated with Gallionella were exclusively observed in sediments impacted by mining activities, suggesting an adaptation of this genus to these environments. In contrast, Sideroxydans-related sequences were found in all sediments including the mining impacted locations. The highest and lowest relative frequencies of Gallionellaceae-related FeOB were associated with the lowest and highest concentrations of Fe, respectively. The data enclosed here clearly show distinct species-specific ecological niches, with Gallionella species dominating in sediments impacted by anthropogenic activities over Sideroxydans species.

17.
Front Microbiol ; 4: 254, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062729

RESUMEN

The two microaerophilic, Fe-oxidizing bacteria (FeOB) Sideroxydans ES-1 and Gallionella ES-2 have single circular chromosomes of 3.00 and 3.16 Mb that encode 3049 and 3006 genes, respectively. Multi-locus sequence analysis (MLSA) confirmed the relationship of these two organisms to one another, and indicated they may form a novel order, the Gallionellalaes, within the Betaproteobacteria. Both are adapted for chemolithoautotropy, including pathways for CO2-fixation, and electron transport pathways adapted for growth at low O2-levels, an important adaptation for growing on Fe(II). Both genomes contain Mto-genes implicated in iron-oxidation, as well as other genes that could be involved in Fe-oxidation. Nearly 10% of their genomes are devoted to environmental sensing, signal transduction, and chemotaxis, consistent with their requirement for growing in narrow redox gradients of Fe(II) and O2. There are important differences as well. Sideroxydans ES-1 is more metabolically flexible, and can utilize reduced S-compounds, including thiosulfate, for lithotrophic growth. It has a suite of genes for nitrogen fixation. Gallionella ES-2 contains additional gene clusters for exopolysaccharide production, and has more capacity to resist heavy metals. Both strains contain genes for hemerythrins and globins, but ES-1 has an especially high numbers of these genes that may be involved in oxygen homeostasis, or storage. The two strains share homology with the marine FeOB Mariprofundus ferrooxydans PV-1 in CO2 fixation genes, and respiratory genes. In addition, ES-1 shares a suite of 20 potentially redox active genes with PV-1, as well as a large prophage. Combined these genetic, morphological, and physiological differences indicate that these are two novel species, Sideroxydans lithotrophicus ES-1(T) (ATCC 700298(T); JCM 14762; DSMZ 22444; NCMA B100), and Gallionella capsiferriformans ES-2(T) (ATCC 700299(T); JCM 14763; DSMZ 22445; NCMA B101).

18.
J Microbiol Methods ; 95(2): 138-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954479

RESUMEN

Since the first isolation of the well-known iron oxidizer Acidithiobacillus ferrooxidans various media and techniques have been developed to isolate new species of acidophilic iron-oxidizing bacteria. A successful strategy in many cases was the use of iFeo medium in double-layer plates with a heterotrophic strain in the underlayer. However, even with samples which had been shown by molecular techniques to be dominated by "Ferrovum myxofaciens" and Gallionella-related bacteria, these bacteria were isolated considerably less frequently than Acidithiobacillus spp. on iFeo. Therefore, a new medium was designed which corresponded largely to the chemical composition of the mine water in a treatment plant dominated by the bacterial groups mentioned and was called artificial pilot-plant water (APPW). The analyses of approximately 500 colonies obtained from mine waters of two different sampling sites by PCR with primers specific for Acidithiobacillus spp., "Ferrovum" spp., Gallionella relatives, and Acidiphilium spp. revealed higher abundances of "Ferrovum" spp. and Gallionella relatives on the newly designed APPW medium than on iFeo which favored Acidithiobacillus spp. Molecular analysis of the colonies obtained indicated the occurrence of at least two species of iron-oxidizing bacteria and/or the heterotrophic Acidiphilium spp. in most of the colonies. Furthermore, the influence on the isolation of the concentrations of iron, phosphate, and ammonium of APPW, in levels of the iFeo medium previously described was studied.


Asunto(s)
Medios de Cultivo/química , Gallionellaceae/crecimiento & desarrollo , Minería , Agua/química , Acidithiobacillus/clasificación , Acidithiobacillus/aislamiento & purificación , Cartilla de ADN/genética , ADN Bacteriano/genética , Gallionellaceae/clasificación , Gallionellaceae/aislamiento & purificación , Hierro/química , Oxidación-Reducción , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
19.
Front Microbiol ; 4: 390, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385973

RESUMEN

We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic "Ferrovum myxofaciens" was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and "Ferrovum myxofaciens" revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

20.
Front Microbiol ; 3: 64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22375139

RESUMEN

Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is mainly due to the lack of isolated representatives and molecular detection techniques. Recently, we developed PCR-DGGE and qPCR assays to detect and enumerate Gallionella-related neutrophilic iron-oxidizers (Ga-FeOB) enabling the assessment of controlling physical as well as biological factors in various ecosystems. In this study, we investigated the spatial distribution of Ga-FeOB in co-occurrence with methane-oxidizing bacteria (MOB) in a riparian wetland. Soil samples were collected at different spatial scales (ranging from meters to centimeters) representing a hydrological gradient. The diversity of Ga-FeOB was assessed using PCR-DGGE and the abundance of both Ga-FeOB and MOB by qPCR. Geostatistical methods were applied to visualize the spatial distribution of both groups. Spatial distribution as well as abundance of Ga-FeOB and MOB was clearly correlated to the hydrological gradient as expressed in moisture content of the soil. Ga-FeOB outnumbered the MOB subgroups suggesting their competitiveness or the prevalence of Fe(2+) over CH(4) oxidation in this floodplain.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda