Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Más filtros

Publication year range
1.
Plant Cell Physiol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668644

RESUMEN

Since the discovery of brassinolide in the pollen of rapeseed, brassinosteroids (BRs) have consistently been associated with reproductive traits. However, compared to what is known for how BRs shape vegetative development, the understanding of how these hormones regulate reproductive traits is comparatively still lacking. Nevertheless, there is now considerable evidence that BRs regulate almost all aspects of reproduction, from ovule and pollen formation to seed and fruit development. Here, we review the current body of knowledge on how BRs regulate reproductive processes in plants, and what is known about how these pathways are transduced at the molecular level. We then discuss how the manipulation of BR biosynthesis and signaling can be a promising avenue for improving crop traits which rely on efficient reproduction. We thus propose that BR hold an untapped potential for plant breeding, which could contribute to attain food security in the coming years.

2.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735929

RESUMEN

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Asunto(s)
Aegilops , Inestabilidad Cromosómica , Cromosomas de las Plantas , Hibridación Genética , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Aegilops/genética , Meiosis/genética , Triploidía , Poliploidía , Genoma de Planta
3.
Annu Rev Genet ; 50: 93-111, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27617973

RESUMEN

Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.


Asunto(s)
Fertilización/genética , Interacciones Espermatozoide-Óvulo/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Tetraspanina 29/genética , Zona Pelúcida/fisiología
4.
New Phytol ; 243(6): 2214-2234, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39039772

RESUMEN

Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.


Asunto(s)
Arabidopsis , Centrómero , Inestabilidad Genómica , Meiosis , Ploidias , Rayos Ultravioleta , Meiosis/efectos de la radiación , Meiosis/genética , Centrómero/genética , Centrómero/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Células Germinativas de las Plantas/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Huso Acromático/efectos de la radiación
5.
J Exp Biol ; 227(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380562

RESUMEN

From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.


Asunto(s)
Espermatozoides , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiología , Animales , Humanos , Densidad de Población , Metabolismo Energético , Recuento de Espermatozoides
6.
J Eukaryot Microbiol ; : e13052, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085163

RESUMEN

An astonishing range of morphologies and life strategies has arisen across the vast diversity of protists, allowing them to thrive in most environments. In model protists, like Tetrahymena, Dictyostelium, or Trypanosoma, life cycles involving multiple life stages with different morphologies have been well characterized. In contrast, knowledge of the life cycles of free-living protists, which primarily consist of uncultivated environmental lineages, remains largely fragmentary. Various life stages and lineage-specific cellular innovations have been observed in the field for uncultivated protists, but such innovations generally lack functional characterization and have unknown physiological and ecological roles. In the actual state of knowledge, evidence of sexual processes is confirmed for 20% of free-living protist lineages. Nevertheless, at the onset of eukaryotic diversification, common molecular trends emerged to promote genetic recombination, establishing sex as an inherent feature of protists. Here, we review protist life cycles from the viewpoint of life cycle transitions and genetics across major eukaryotic lineages. We focus on the scarcely observed sexual cycle of free-living protists, summarizing evidence for its existence and describing key genes governing its progression, as well as, current methods for studying the genetics of sexual cycles in both cultivable and uncultivated protist groups.

7.
Am J Bot ; 111(8): e16325, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38704729

RESUMEN

PREMISE: Quaking aspen is a clonal tree species that has mixed ploidy, often with high relative abundance of both diploids and triploids but no haploids or tetraploids. Triploids typically have low fertility, leaving their occurrence apparently unlikely from an evolutionary perspective, unless they provide a "triploid bridge" to generating higher-fitness tetraploids-which are not observed in this species. This study focused on how triploidy can be maintained in quaking aspen. METHODS: A computational model was used to simulate gamete production, sexual reproduction, asexual reproduction, parent survival, and offspring survival in a population. All parameters were assumed to be cytotype-dependent and environment-independent. Sampling methods were used to identify parameter combinations consistent with observed cytotype frequencies. RESULTS: Many processes and parameter values were sufficient to yield a moderate frequency of triploids, and very few were necessary. The most plausible route involved higher triploid survival at the parent or offspring stage and limited unreduced gamete production by either diploid or triploid parents. Triploid fertility was helpful but not necessary. CONCLUSIONS: The coexistence of diploids and triploids in quaking aspen is statistically likely and promoted by the existence of commonly observed, long-lived triploid clones. However, other mechanisms not captured by the model related to environmental variation could also occur. Further empirical data or more complex but difficult-to-parameterize models are needed to gain further insight.


Asunto(s)
Populus , Triploidía , Populus/genética , Populus/fisiología , Reproducción , Evolución Biológica , Diploidia , Modelos Biológicos
8.
J Phycol ; 60(2): 409-417, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38159028

RESUMEN

Brown algal male gametes show chemotaxis to the sex pheromone that is released from female gametes. The chemotactic behavior of the male gametes is controlled by the changes in the beating of two flagella known as the anterior and posterior flagellum. Our previous study using Mutimo cylindricus showed that the sex pheromone induced an increment in both the deflection angle of the anterior flagellum and sustained unilateral bend of the posterior flagellum, but the mechanisms regulating these two flagellar waveforms were not fully revealed. In this study, we analyzed the changes in swimming path and flagellar waveforms with a high-speed recording system under different calcium conditions. The extracellular Ca2+ concentration at 10-3 M caused an increment in the deflection angle of the anterior flagellum only when ionomycin was absent. No sustained unilateral bend of the posterior flagellum was induced either in the absence or presence of ionomycin in extracellular Ca2+ concentrations below 10-2 M. Real-time Ca2+ imaging revealed that there is a spot near the basal part of anterior flagellum showing higher Ca2+ than in the other parts of the cell. The intensity of the spot slightly decreased when male gametes were treated with the sex pheromone. These results suggest that Ca2+-dependent changes in the anterior and posterior flagellum are regulated by distinct mechanisms and that the increase in the anterior flagellar deflection angle and sustained unilateral bend of the posterior flagellum may not be primarily induced by the Ca2+ concentration.


Asunto(s)
Phaeophyceae , Atractivos Sexuales , Calcio , Quimiotaxis/fisiología , Ionomicina , Células Germinativas , Flagelos
9.
Bioessays ; 44(3): e2100143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34967029

RESUMEN

This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration. Also see the video abstract here: https://youtu.be/lC5nC-WOcm8.


Asunto(s)
Flagelos , Células Germinativas , Animales , Transporte Biológico , Flagelos/genética , Flagelos/metabolismo , Masculino
10.
Infect Immun ; 91(7): e0016723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37260388

RESUMEN

A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.


Asunto(s)
Carboxiliasas , Culicidae , Malaria , Parásitos , Animales , Masculino , Culicidae/parasitología , Aminoácidos/metabolismo , Lisina/metabolismo , Malaria/parasitología , Bacterias , Células Germinativas/metabolismo , Carboxiliasas/metabolismo
11.
Plant J ; 111(1): 19-37, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35340073

RESUMEN

Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ATPasas Asociadas con Actividades Celulares Diversas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Silenciador del Gen , Meiosis/genética , Proteínas Asociadas a Microtúbulos/genética , Fitomejoramiento , Polen/genética , Polen/metabolismo
12.
Proc Biol Sci ; 290(2001): 20230389, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357859

RESUMEN

Exploring the fitness consequences of whole-genome multiplication (WGM) is essential for understanding the establishment of autopolyploids in diploid parental populations, but suitable model systems are rare. We examined the impact of WGM on reproductive traits in three major cytotypes (2x, 3x, 4x) of Pilosella rhodopea, a species with recurrent formation of neo-autopolyploids in mixed-ploidy populations. We found that diploids had normal female sporogenesis and gametogenesis, high fertility, and produced predominantly euploid seed progeny. By contrast, autopolyploids had highly disturbed developmental programs that resulted in significantly lower seed set and a high frequency of aneuploid progeny. All cytotypes, but particularly triploids, produced gametes of varying ploidy, including unreduced ones, that participated in frequent intercytotype mating. Noteworthy, the reduced investment in sexual reproduction in autopolyploids was compensated by increased production of axillary rosettes and the novel expression of two clonal traits: adventitious rosettes on roots (root-sprouting), and aposporous initial cells in ovules which, however, do not result in functional apomixis. The combination of increased vegetative clonal growth in autopolyploids and frequent intercytotype mating are key mechanisms involved in the formation and maintenance of the largest diploid-autopolyploid primary contact zone ever recorded in angiosperms.


Asunto(s)
Fertilidad , Ploidias , Diploidia , Reproducción , Semillas , Poliploidía
13.
Histochem Cell Biol ; 159(2): 163-183, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36242635

RESUMEN

Tetraspanin proteins are mostly known as organizers of molecular complexes on cell membranes, widely expressed on the surface of most nucleated cells. Although tetraspanins participate in many physiological processes of mammals, including reproduction, their relevance to the processes of folliculogenesis and oogenesis has not yet been fully elucidated. We bring new information regarding the distribution of tetraspanins CD9, CD81, CD151, CD82, and CD63 at different stages of follicular development in cattle. The found distribution of tetraspanin CD9, CD63, and integrin alpha V in similar areas of ovarian tissue outlined their possible cooperation. We also describe yet-unknown distribution patterns of CD151, CD82, and CD63 on immature and mature bovine oocytes. The unique localization of tetraspanins CD63 and CD82 in the zona pellucida of bovine oocytes suggested their involvement in transzonal projections. Furthermore, we present an unchanged distribution pattern of the studied tetraspanins in vitrified mature bovine oocytes. The immunofluorescent analysis was supplemented by in silico data addressing tetraspanins expression in the ovarian cells and oocytes across several species. The obtained results suggest that in the study of the oocyte development and potentially the fertilization process of cattle, the role of tetraspanins and integrins should also be taken into account.


Asunto(s)
Oocitos , Tetraspaninas , Bovinos , Animales , Tetraspaninas/metabolismo , Oocitos/metabolismo , Proteínas/metabolismo , Oogénesis , Mamíferos
14.
J Exp Bot ; 74(8): 2462-2478, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36794770

RESUMEN

Apomixis is considered a potentially revolutionary tool to generate high-quality food at a lower cost and shorter developmental time due to clonal seed production through apomeiosis and parthenogenesis. In the diplosporous type of apomixis, meiotic recombination and reduction are circumvented either by avoiding or failing meiosis or by a mitotic-like division. Here, we review the literature on diplospory, from early cytological studies dating back to the late 19th century to recent genetic findings. We discuss diplosporous developmental mechanisms, including their inheritance. Furthermore, we compare the strategies adopted to isolate the genes controlling diplospory with those to produce mutants forming unreduced gametes. Nowadays, the dramatically improved technologies of long-read sequencing and targeted CRISPR/Cas mutagenesis justify the expectation that natural diplospory genes will soon be identified. Their identification will answer questions such as how the apomictic phenotype can be superimposed upon the sexual pathway and how diplospory genes have evolved. This knowledge will contribute to the application of apomixis in agriculture.


Asunto(s)
Apomixis , Apomixis/genética , Semillas/genética , Reproducción Asexuada , Patrón de Herencia , Fenotipo , Reproducción/genética
15.
Mol Reprod Dev ; 90(12): 785-803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37997675

RESUMEN

The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.


Asunto(s)
Heterocromatina , Histonas , Animales , Masculino , Humanos , Femenino , Anciano , Histonas/metabolismo , Heterocromatina/metabolismo , Lisina/metabolismo , Semen/metabolismo , Células Germinativas/metabolismo , Metilación de ADN , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Protaminas/metabolismo , Mamíferos/genética
16.
Reprod Biomed Online ; 47(5): 103322, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677925

RESUMEN

In-vitro gametogenesis (IVG) is almost exclusively discussed as a potential solution for people who have no (functional) gametes. However, IVG could also be seen as an alternative to standard IVF. Instead of submitting women to ovarian stimulation and invasive oocyte retrieval, the creation of oocytes from stem cells should be the first treatment option (assuming it to be reasonably safe and effective). The primary reason for the application of this method would not be for these women to become genetic parents but to alleviate the physical and psychological burden of standard IVF treatment on them.


Asunto(s)
Células Germinativas , Células Madre , Humanos , Femenino , Oocitos , Gametogénesis
17.
Cryobiology ; 111: 134-141, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37207975

RESUMEN

In this study, we optimized a simple method of cryopreservation for Mugil cephalus sperm based on post-thaw motility and viability. A series of experiments were conducted by changing the extender, cryoprotectant and freezing height above the liquid nitrogen (LN) surface. First, we carried out the cryopreservation using the extender V2E and cryoprotective agents (CPAs) namely, propylene glycol (PG), methanol (MeOH), glycerol (GLY), ethylene glycol (EG), dimethylsulfoxide (Me2SO) and dimethylacetamide (DMA) at a final concentration of 5% and 10%. We found that 10% of GLY, EG and Me2SO were more suitable compared to other CPAs. Then, different freezing heights (6, 8, 10 and 12 cm) above the LN surface were experimented with extender V2E and optimized CPAs. Then, 0.3 M of glucose, sucrose and trehalose were tested as extender along with optimized CPAs and freezing height. Additionally, the effect of fast-rate freezing and storage days (7, 30 and 180) on post-thaw sperm quality was documented using the factors optimized in earlier experiments. For all experiments, the fresh sperm was diluted at a ratio of 1:1 with cryomedium (CPA + extender), loaded into cryovials (2.0 mL) and frozen. The cryopreserved sperm was thawed at 30 °C for 90-120 s and their quality was evaluated. Among the experimented factors, sperm diluted in cryomedium (0.3 M glucose + 10% EG) and frozen at 4 cm above the LN surface registered significantly (P < 0.05) highest post-thaw motility (73 ± 2%) and (71 ± 1%) viability. Fast-rate freezing has resulted in lower (about 30%) post-thaw motility and viability of sperm. The storage days (7, 30 and 180) did not have a significant effect on post-thaw sperm quality. Overall results show that using the factors optimized through this study, high-quality sperm can be obtained after cryopreservation.


Asunto(s)
Preservación de Semen , Smegmamorpha , Masculino , Animales , Criopreservación/métodos , Motilidad Espermática , Semen , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides , Crioprotectores/farmacología , Congelación , Glicerol/farmacología , Glicol de Etileno/farmacología , Glucosa/farmacología
18.
J Assist Reprod Genet ; 40(2): 371-379, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529830

RESUMEN

PURPOSE: The aim of this study is to determine if donor gamete use is associated with patients' decisions regarding disposition of supernumerary embryos. METHODS: Patients who intended to undergo an IVF cycle at a single academic center signed an embryo disposition consent form to indicate their disposition preferences for any supernumerary embryos. A retrospective chart review was performed to obtain the embryo disposition declarations and demographic information. The primary outcome was the distribution of embryo disposition choices between patients who used donor gametes compared to patients who did not use donor gametes. Fisher's exact test was used to compare groups. Logistic regression models were created to determine the association between donor gamete use and disposition decision after adjusting for patient age, body mass index, and nulliparity. RESULTS: Five hundred six patients were included. Ninety-one (18.0%) patients used donor gametes [46 (9.0%) donor oocytes, 52 (10.3%) donor sperm]. Patients using donor gametes differed from those not using donor gametes when making decisions concerning death of the patient (P < 0.01), simultaneous death (P = 0.04), separation (P < 0.01), discontinuation of ART (P = 0.01), and time-limited storage (P < 0.01). Most patients, regardless of donor or autologous gamete use, awarded embryos to themselves or their partner if given the option. For patients who did not choose this option, excess embryos were generally awarded to research or discarded rather than donating to another couple. Patients using donor gametes were more likely to award embryos to research over discarding. CONCLUSION: Patients using donor gametes made different choices regarding supernumerary embryo disposition compared to patients not using donor gametes.


Asunto(s)
Destinación del Embrión , Fertilización In Vitro , Masculino , Animales , Estudios Retrospectivos , Semen , Células Germinativas
19.
J Assist Reprod Genet ; 40(12): 2755-2767, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37770817

RESUMEN

Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.


Asunto(s)
Preservación de la Fertilidad , Neoplasias , Humanos , Masculino , Femenino , Preservación de la Fertilidad/métodos , Calidad de Vida , Criopreservación/métodos , Neoplasias/complicaciones , Neoplasias/terapia , Testículo
20.
Reprod Domest Anim ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37942852

RESUMEN

The developmental origins of health and disease (DOHaD) shows that a relationship exists between parental environment at large, foeto-placental development and the risk for the offspring to develop non-transmittable disease(s) in adulthood. This concept has been validated in both humans and livestock. In mammals, after fertilization and time spent free in the maternal reproductive tract, the embryo develops a placenta that, in close relationship with maternal endometrium, is the organ responsible for exchanges between dam and foetus. Any modification of the maternal environment can lead to adaptive mechanisms affecting placental morphology, blood flow, foetal-maternal exchanges (transporters) and/or endocrine function, ultimately modifying placental efficiency. Among deleterious environments, undernutrition, protein restriction, overnutrition, micronutrient deficiencies and food contaminants can be outlined. When placental adaptive capacities become insufficient, foetal growth and organ formation is no longer optimal, including foetal gonadal formation and maturation, which can affect subsequent offspring fertility. Since epigenetic mechanisms have been shown to be key to foetal programming, epigenetic modifications of the gametes may also occur, leading to inter-generational effects. After briefly describing normal gonadal development in domestic species and inter-species differences, this review highlights the current knowledge on intra-uterine programming of offspring fertility with a focus on domestic animals and underlines the importance to assess transgenerational effects on offspring fertility at a time when new breeding systems are developed to face the current climate changes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda