Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Annu Rev Genomics Hum Genet ; 22: 357-383, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-33909459

RESUMEN

The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.


Asunto(s)
Smegmamorpha , Animales , Mapeo Cromosómico , Genómica , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Smegmamorpha/genética
2.
Am Nat ; 204(1): 15-29, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857340

RESUMEN

AbstractAdaptation to replicated environmental conditions can be remarkably predictable, suggesting that parallel evolution may be a common feature of adaptive radiation. An open question, however, is how phenotypic variation itself evolves during repeated adaptation. Here, we use a dataset of morphological measurements from 35 populations of threespine stickleback, consisting of 16 parapatric lake-stream pairs and three marine populations, to understand how phenotypic variation has evolved during transitions from marine to freshwater environments and during subsequent diversification across the lake-stream boundary. We find statistical support for divergent phenotypic covariance (P) across populations, with most diversification of P occurring among freshwater populations. Despite a close correspondence between within-population phenotypic variation and among-population divergence, we find that variation in P is unrelated to total variation in population means across the set of populations. For lake-stream pairs, we find that theoretical predictions for microevolutionary change can explain more than 30% of divergence in P matrices across the habitat boundary. Together, our results indicate that divergence in variance structure occurs primarily in dimensions of trait space with low phenotypic integration, correlated with disparate lake and stream environments. Our findings illustrate how conserved and divergent features of multivariate variation can underlie adaptive radiation.


Asunto(s)
Evolución Biológica , Lagos , Smegmamorpha , Animales , Smegmamorpha/genética , Smegmamorpha/fisiología , Smegmamorpha/anatomía & histología , Ecosistema , Fenotipo , Adaptación Fisiológica , Ríos , Adaptación Biológica
3.
Proc Biol Sci ; 291(2020): 20232617, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593844

RESUMEN

When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.


Asunto(s)
Agua Dulce , Smegmamorpha , Animales , Smegmamorpha/genética , Endogamia , Variación Genética
4.
Proc Biol Sci ; 291(2014): 20232582, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196352

RESUMEN

Parental care is a critical determinant of offspring fitness, and parents adjust their care in response to ecological challenges, including predation risk. The experiences of both mothers and fathers can influence phenotypes of future generations (transgenerational plasticity). If it is adaptive for parents to alter parental care in response to predation risk, then we expect F1 and F2 offspring who receive transgenerational cues of predation risk to shift their parental care behaviour if these ancestral cues reliably predict a similarly risky environment as their F0 parents. Here, we used three-spined sticklebacks (Gasterosteus aculeatus) to understand how paternal exposure to predation risk prior to mating alters reproductive traits and parental care behaviour in unexposed F1 sons and F2 grandsons. Sons of predator-exposed fathers took more attempts to mate than sons of control fathers. F1 sons and F2 grandsons with two (maternal and paternal) predator-exposed grandfathers shifted their paternal care (fanning) behaviour in strikingly similar ways: they fanned less initially, but fanned more near egg hatching. This shift in fanning behaviour matches shifts observed in response to direct exposure to predation risk, suggesting a highly conserved response to pre-fertilization predator exposure that persists from the F0 to the F1 and F2 generations.


Asunto(s)
Peces , Smegmamorpha , Masculino , Animales , Femenino , Humanos , Comunicación Celular , Señales (Psicología) , Madres
5.
Proc Biol Sci ; 291(2021): 20240337, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628124

RESUMEN

Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.


Asunto(s)
Aislamiento Reproductivo , Smegmamorpha , Animales , Fósiles , Ecosistema , Smegmamorpha/anatomía & histología , Fenotipo
6.
J Anim Ecol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056271

RESUMEN

Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.

7.
J Anim Ecol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049666

RESUMEN

Parents routinely encounter stress in the ecological environment that can affect offspring development (transgenerational plasticity: TGP); however, parents' interactions with conspecifics may alter how parents respond to ecological stressors. During social buffering, the presence of conspecifics can reduce the response to or increase the speed of recovery from a stressor. This may have cascading effects on offspring if conspecifics can mitigate parental responses to ecological stress in ways that blunt the transmission of stress-induced transgenerational effects. Here, we simultaneously manipulated both paternal social isolation and experience with predation risk prior to fertilisation in threespined stickleback (Gasterosteus aculeatus). We generated offspring via in-vitro fertilisation to allow us to isolate paternal effects mediated via sperm alone (i.e. in the absence of paternal care). If social buffering mitigates TGP induced by paternal exposure to predation risk, then we expect the transgenerational effects of predation exposure to be weaker when a conspecific is present compared to when the father is isolated. Offspring of predator-exposed fathers showed reduced anxiety-like behaviour and tended to be captured faster by the predator. Fathers who were socially isolated also had offspring that were captured faster by a live predator, suggesting that paternal social isolation may have maladaptive effects on how offspring respond to ecological stressors. Despite additive effects of paternal social isolation and paternal predation risk, we found no evidence of an interaction between these paternal treatments, suggesting that the presence of a conspecific did not buffer fathers and/or offspring from the effects of predation risk. Our results suggest that socially induced stress is an important, yet underappreciated, mediator of TGP and can elicit transgenerational effects even in species that do not form permanent social groups. Future studies should therefore consider how the parental social environment can affect both within and trans-generational responses to ecological stressors.

8.
Oecologia ; 204(2): 427-437, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37358647

RESUMEN

Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.


Asunto(s)
Enfermedades Parasitarias , Smegmamorpha , Animales , Interacciones Huésped-Parásitos , Ecosistema , Nutrientes
9.
Am Nat ; 201(3): E41-E55, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848516

RESUMEN

AbstractUncovering the demographic basis of population fluctuations is a central goal of population biology. This is particularly challenging for spatially structured populations, which require disentangling synchrony in demographic rates from coupling via movement between locations. In this study, we fit a stage-structured metapopulation model to a 29-year time series of threespine stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland. The lake comprises two basins (North and South) connected by a channel through which the stickleback disperse. The model includes time-varying demographic rates, allowing us to assess the potential contributions of recruitment and survival, spatial coupling via movement, and demographic transience to the population's large fluctuations in abundance. Our analyses indicate that recruitment was only modestly synchronized between the two basins, whereas survival probabilities of adults were more strongly synchronized, contributing to cyclic fluctuations in the lake-wide population size with a period of approximately 6 years. The analyses further show that the two basins were coupled through movement, with the North Basin subsidizing the South Basin and playing a dominant role in driving the lake-wide dynamics. Our results show that cyclic fluctuations of a metapopulation can be explained in terms of the combined effects of synchronized demographic rates and spatial coupling.


Asunto(s)
Biología , Smegmamorpha , Animales , Lagos , Movimiento , Densidad de Población
10.
Mol Ecol ; 32(7): 1581-1591, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36560898

RESUMEN

Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.


Asunto(s)
Metilación de ADN , Smegmamorpha , Animales , Metilación de ADN/genética , Adaptación Fisiológica/genética , Aclimatación/genética , Lagos , Smegmamorpha/genética
11.
Mol Ecol ; 32(7): 1708-1725, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36627230

RESUMEN

Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2  = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.


Asunto(s)
Variación Genética , Smegmamorpha , Animales , Genoma/genética , Fenotipo , Selección Genética , Smegmamorpha/genética , Agua
12.
Glob Chang Biol ; 29(1): 206-214, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259414

RESUMEN

The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.


Asunto(s)
Smegmamorpha , Animales , Aclimatación , Temperatura , Peces/fisiología , Agua
13.
J Fish Biol ; 102(4): 844-855, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36647901

RESUMEN

Gynogenetic embryos - those inheriting only maternal DNA - can be experimentally created by fertilizing eggs with radiation-treated sperm containing inactivated paternal chromosomes. Diploidy in the zygotes can be maintained through prevention of the second meiosis or restored by preventing the first mitosis after the maternal chromosome complement has been replicated. These gynogenetic organisms are useful in many fields including aquaculture, evolutionary biology and genomics. Although gynogenetic organisms have been created in numerous species, the completeness of uni-parental inheritance has often been assumed rather than thoroughly quantified across the genome. Instead, when tests of uni-parental inheritance occur, they typically rely on well-studied genetically determined phenotypes that represent a very small sub-set of the genome. Only assessing small genomic regions for paternal inheritance leaves the question of whether some paternal contributions to offspring might still have occurred. In this study, the authors quantify the efficacy of creating gynogenetic diploid three-spined stickleback fish (Gasterosteus aculeatus). To this end, the authors mirrored previous assessments of paternal contribution using well-studied genetically determined phenotypes including sex and genetically dominant morphological traits but expanded on previous studies using dense restriction site-associated DNA sequencing (RAD-seq) markers in parents and offspring to assess paternal inheritance genome-wide. In the gynogenetic diploids, the authors found no male genotypes underlying their phenotypes of interest - sex and dominant phenotypic traits. Using genome-wide assessments of paternal contribution, nevertheless, the authors found evidence of a small, yet potentially important, amount of paternally "leaked" genetic material. The application of this genome-wide approach identifies the need for more widespread assessment of paternal contributions to gynogenetic animals and promises benefits for many aspects of aquaculture, evolutionary biology and genomics.


Asunto(s)
Semen , Smegmamorpha , Masculino , Animales , Genoma , Ploidias , Cromosomas , Smegmamorpha/genética , Marcadores Genéticos
14.
Mol Biol Evol ; 38(8): 3308-3331, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871629

RESUMEN

MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.


Asunto(s)
Evolución Biológica , Peces/genética , Genoma , MicroARNs/genética , Animales , Secuencia de Bases , Secuencia Conservada , Peces/metabolismo , Duplicación de Gen , Gónadas/metabolismo , Familia de Multigenes , Selección Genética , Especificidad de la Especie
15.
Proc Biol Sci ; 289(1974): 20220422, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506223

RESUMEN

In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.


Asunto(s)
Vigor Híbrido , Smegmamorpha , Animales , Especiación Genética , Hibridación Genética , Selección Genética , Smegmamorpha/genética
16.
Proc Biol Sci ; 289(1979): 20220571, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855606

RESUMEN

There is growing evidence that offspring receive information about their environment vertically, i.e. from their parents (environmental parental effects or transgenerational plasticity). For example, parents exposed to predation risk may produce offspring with heightened antipredator defences. At the same time, organisms can gain information about the environment horizontally, from conspecifics. In this study, we provide some of the first evidence that horizontally acquired social information can be transmitted vertically across generations. Three-spined stickleback (Gasterosteus aculeatus) fathers produced larval offspring with altered antipredator behaviour when fathers received visual and olfactory cues from predator-chased neighbours. Although fathers did not personally witness their neighbours being chased (i.e. they never saw the predator), changes in offspring traits were similar to those induced by direct paternal exposure to predation risk. These findings suggest that two different non-genetic pathways (horizontal transfer of social information, vertical transfer via sperm-mediated paternal effects) can combine to affect offspring phenotypes. The implications of simultaneous horizontal and vertical transmission are widely appreciated in the context of disease and culture; our results suggest that they could be equally important for the maintenance of phenotypic variation and could have profound consequences for the rate at which information flows within and across generations.


Asunto(s)
Smegmamorpha , Animales , Masculino , Herencia Paterna , Fenotipo , Conducta Predatoria , Semen , Smegmamorpha/genética
17.
Mol Ecol ; 31(4): 1234-1253, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34843145

RESUMEN

The three-spined stickleback (Gasterosteus aculeatus) has repeatedly and independently adapted to freshwater habitats from standing genetic variation (SGV) following colonization from the sea. However, in the Mediterranean Sea G. aculeatus is believed to have gone extinct, and thus the spread of locally adapted alleles between different freshwater populations via the sea since then has been highly unlikely. This is expected to limit parallel evolution, that is the extent to which phylogenetically related alleles can be shared among independently colonized freshwater populations. Using whole genome and 2b-RAD sequencing data, we compared levels of genetic differentiation and genetic parallelism of 15 Adriatic stickleback populations to 19 Pacific, Atlantic and Caspian populations, where gene flow between freshwater populations across extant marine populations is still possible. Our findings support previous studies suggesting that Adriatic populations are highly differentiated (average FST  ≈ 0.45), of low genetic diversity and connectivity, and likely to stem from multiple independent colonizations during the Pleistocene. Linkage disequilibrium network analyses in combination with linear mixed models nevertheless revealed several parallel marine-freshwater differentiated genomic regions, although still not to the extent observed elsewhere in the world. We hypothesize that current levels of genetic parallelism in the Adriatic lineages are a relic of freshwater adaptation from SGV prior to the extinction of marine sticklebacks in the Mediterranean that has persisted despite substantial genetic drift experienced by the Adriatic stickleback isolates.


Asunto(s)
Smegmamorpha , Animales , Agua Dulce , Flujo Genético , Variación Genética , Genoma , Desequilibrio de Ligamiento , Smegmamorpha/genética
18.
Mol Ecol ; 31(3): 811-821, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34753205

RESUMEN

Adaptation to derived habitats often occurs from standing genetic variation. The maintenance within ancestral populations of genetic variants favourable in derived habitats is commonly ascribed to long-term antagonism between purifying selection and gene flow resulting from hybridization across habitats. A largely unexplored alternative idea based on quantitative genetic models of polygenic adaptation is that variants favoured in derived habitats are neutral in ancestral populations when their frequency is relatively low. To explore the latter, we first identify genetic variants important to the adaptation of threespine stickleback fish (Gasterosteus aculeatus) to a rare derived habitat-nutrient-depleted acidic lakes-based on whole-genome sequence data. Sequencing marine stickleback from six locations across the Atlantic Ocean then allows us to infer that the frequency of these derived variants in the ancestral habitat is unrelated to the likely opportunity for gene flow of these variants from acidic-adapted populations. This result is consistent with the selective neutrality of derived variants within the ancestor. Our study thus supports an underappreciated explanation for the maintenance of standing genetic variation, and calls for a better understanding of the fitness consequences of adaptive variation across habitats and genomic backgrounds.


Asunto(s)
Smegmamorpha , Animales , Flujo Génico , Variación Genética , Genoma , Selección Genética , Smegmamorpha/genética
19.
J Exp Biol ; 225(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36268761

RESUMEN

The metabolic rate (MO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in MO2. We hypothesized that MO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in MO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in MO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback.


Asunto(s)
Frío , Smegmamorpha , Animales , Temperatura , Aclimatación/fisiología , Smegmamorpha/fisiología , Mitocondrias , Músculo Esquelético/fisiología
20.
Parasitology ; 149(9): 1173-1178, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35570667

RESUMEN

The cestode Schistocephalus solidus is a common parasite in freshwater threespine stickleback populations, imposing strong fitness costs on their hosts. Given this, it is surprising how little is known about the timing and development of infections in natural stickleback populations. Previous work showed that young-of-year stickleback can get infected shortly after hatching. We extended this observation by comparing infection prevalence of young-of-year stickleback from 3 Alaskan populations (Walby, Cornelius and Wolf lakes) over 2 successive cohorts (2018/19 and 2019/20). We observed strong variation between sampling years (2018 vs 2019 vs 2020), stickleback age groups (young-of-year vs 1-year-old) and sampling populations.


Asunto(s)
Infecciones por Cestodos , Enfermedades de los Peces , Smegmamorpha , Alaska/epidemiología , Animales , Infecciones por Cestodos/epidemiología , Infecciones por Cestodos/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Interacciones Huésped-Parásitos , Lagos/parasitología , Smegmamorpha/parasitología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda