Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-39192091

RESUMEN

The generation of synthetic patient data that reflect the statistical properties of real data plays a fundamental role in today's world because of its potential to (i) be enable proprietary data access for statistical and research purposes and (ii) increase available data (e.g., in low-density regions-i.e., for patients with under-represented characteristics). Generative methods employ a family of solutions for generating synthetic data. The objective of this research is to benchmark numerous state-of-the-art deep-learning generative methods across different scenarios and clinical datasets comprising patient covariates and several pharmacokinetic/pharmacodynamic endpoints. We did this by implementing various probabilistic models aimed at generating synthetic data, such as the Multi-layer Perceptron Conditioning Generative Adversarial Neural Network (MLP cGAN), Time-series Generative Adversarial Networks (TimeGAN), and a more traditional approach like Probabilistic Autoregressive (PAR). We evaluated their performance by calculating discriminative and predictive scores. Furthermore, we conducted comparisons between the distributions of real and synthetic data using Kolmogorov-Smirnov and Chi-square statistical tests, focusing respectively on covariate and output variables of the models. Lastly, we employed pharmacometrics-related metric to enhance interpretation of our results specific to our investigated scenarios. Results indicate that multi-layer perceptron-based conditional generative adversarial networks (MLP cGAN) exhibit the best overall performance for most of the considered metrics. This work highlights the opportunities to employ synthetic data generation in the field of clinical pharmacology for augmentation and sharing of proprietary data across institutions.

2.
J Chem Inf Model ; 62(4): 761-774, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35128926

RESUMEN

Nowadays, machine learning and deep learning approaches are widely utilized for generative chemistry and computer-aided drug design and discovery such as de novo peptide and protein design, where target-specific peptide-based/protein-based therapeutics have been suggested to cause fewer adverse effects than the traditional small-molecule drugs. In light of current advancements in deep learning techniques, generative adversarial network (GAN) algorithms are being leveraged to a wide variety of applications in the process of generative chemistry and computer-aided drug design and discovery. In this review, we focus on the up-to-date developments for de novo peptide and protein design research using GAN algorithms in the interdisciplinary fields of generative chemistry, machine learning, deep learning, and computer-aided drug design and discovery. First, we present various studies that investigate GAN algorithms to fulfill the task of de novo peptide and protein design in the drug development pipeline. In addition, we summarize the drawbacks with respect to the previous studies in de novo peptide and protein design using GAN algorithms. Finally, we depict a discussion of open challenges and emerging problems for future research.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Aprendizaje Automático , Péptidos , Proteínas
3.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916824

RESUMEN

The question of molecular similarity is core in cheminformatics and is usually assessed via a pairwise comparison based on vectors of properties or molecular fingerprints. We recently exploited variational autoencoders to embed 6M molecules in a chemical space, such that their (Euclidean) distance within the latent space so formed could be assessed within the framework of the entire molecular set. However, the standard objective function used did not seek to manipulate the latent space so as to cluster the molecules based on any perceived similarity. Using a set of some 160,000 molecules of biological relevance, we here bring together three modern elements of deep learning to create a novel and disentangled latent space, viz transformers, contrastive learning, and an embedded autoencoder. The effective dimensionality of the latent space was varied such that clear separation of individual types of molecules could be observed within individual dimensions of the latent space. The capacity of the network was such that many dimensions were not populated at all. As before, we assessed the utility of the representation by comparing clozapine with its near neighbors, and we also did the same for various antibiotics related to flucloxacillin. Transformers, especially when as here coupled with contrastive learning, effectively provide one-shot learning and lead to a successful and disentangled representation of molecular latent spaces that at once uses the entire training set in their construction while allowing "similar" molecules to cluster together in an effective and interpretable way.


Asunto(s)
Quimioinformática , Aprendizaje Profundo , Programas Informáticos , Clozapina/química , Análisis por Conglomerados , Floxacilina/química , Curva de Aprendizaje , Temperatura
4.
Sensors (Basel) ; 16(12)2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27898003

RESUMEN

Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.


Asunto(s)
Postura/fisiología , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Reconocimiento de Normas Patrones Automatizadas
5.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944436

RESUMEN

The 'inverse problem' of mass spectrometric molecular identification ('given a mass spectrum, calculate/predict the 2D structure of the molecule whence it came') is largely unsolved, and is especially acute in metabolomics where many small molecules remain unidentified. This is largely because the number of experimentally available electrospray mass spectra of small molecules is quite limited. However, the forward problem ('calculate a small molecule's likely fragmentation and hence at least some of its mass spectrum from its structure alone') is much more tractable, because the strengths of different chemical bonds are roughly known. This kind of molecular identification problem may be cast as a language translation problem in which the source language is a list of high-resolution mass spectral peaks and the 'translation' a representation (for instance in SMILES) of the molecule. It is thus suitable for attack using the deep neural networks known as transformers. We here present MassGenie, a method that uses a transformer-based deep neural network, trained on ~6 million chemical structures with augmented SMILES encoding and their paired molecular fragments as generated in silico, explicitly including the protonated molecular ion. This architecture (containing some 400 million elements) is used to predict the structure of a molecule from the various fragments that may be expected to be observed when some of its bonds are broken. Despite being given essentially no detailed nor explicit rules about molecular fragmentation methods, isotope patterns, rearrangements, neutral losses, and the like, MassGenie learns the effective properties of the mass spectral fragment and valency space, and can generate candidate molecular structures that are very close or identical to those of the 'true' molecules. We also use VAE-Sim, a previously published variational autoencoder, to generate candidate molecules that are 'similar' to the top hit. In addition to using the 'top hits' directly, we can produce a rank order of these by 'round-tripping' candidate molecules and comparing them with the true molecules, where known. As a proof of principle, we confine ourselves to positive electrospray mass spectra from molecules with a molecular mass of 500Da or lower, including those in the last CASMI challenge (for which the results are known), getting 49/93 (53%) precisely correct. The transformer method, applied here for the first time to mass spectral interpretation, works extremely effectively both for mass spectra generated in silico and on experimentally obtained mass spectra from pure compounds. It seems to act as a Las Vegas algorithm, in that it either gives the correct answer or simply states that it cannot find one. The ability to create and to 'learn' millions of fragmentation patterns in silico, and therefrom generate candidate structures (that do not have to be in existing libraries) directly, thus opens up entirely the field of de novo small molecule structure prediction from experimental mass spectra.


Asunto(s)
Metabolómica/métodos , Bibliotecas de Moléculas Pequeñas/análisis , Algoritmos , Aprendizaje Profundo , Espectrometría de Masas , Estructura Molecular
6.
J Cheminform ; 12(1): 53, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-33431037

RESUMEN

We address the problem of generating novel molecules with desired interaction properties as a multi-objective optimization problem. Interaction binding models are learned from binding data using graph convolution networks (GCNs). Since the experimentally obtained property scores are recognised as having potentially gross errors, we adopted a robust loss for the model. Combinations of these terms, including drug likeness and synthetic accessibility, are then optimized using reinforcement learning based on a graph convolution policy approach. Some of the molecules generated, while legitimate chemically, can have excellent drug-likeness scores but appear unusual. We provide an example based on the binding potency of small molecules to dopamine transporters. We extend our method successfully to use a multi-objective reward function, in this case for generating novel molecules that bind with dopamine transporters but not with those for norepinephrine. Our method should be generally applicable to the generation in silico of molecules with desirable properties.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda