Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985322

RESUMEN

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Asunto(s)
Microscopía , Neuronas , Animales , Interneuronas , Ratones , Microscopía/métodos , Neuronas/fisiología , Fotones , Vigilia
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33531364

RESUMEN

Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol-enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage. In contrast to previous probes, the sensor has a single photon bleaching time constant of ∼40 min, has a high temporal resolution and fidelity for detecting action potential firing at 100 Hz, resolves membrane de- and hyperpolarizations of a few millivolts, and has negligible effects on passive membrane properties or synaptic events. The dqGEVI approach should be a valuable tool for optical recordings of subcellular or population membrane potential changes in nerve cells.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales de la Membrana/fisiología , Memoria/fisiología , Neuronas/fisiología , Potenciales de Acción/genética , Animales , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Potenciales de la Membrana/genética
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298417

RESUMEN

(1) From mouse to man, shaking behavior (head twitches and/or wet dog shakes) is a reliable readout of psychedelic drug action. Shaking behavior like psychedelia is thought to be mediated by serotonin 2A receptors on cortical pyramidal cells. The involvement of pyramidal cells in psychedelic-induced shaking behavior remains hypothetical, though, as experimental in vivo evidence is limited. (2) Here, we use cell type-specific voltage imaging in awake mice to address this issue. We intersectionally express the genetically encoded voltage indicator VSFP Butterfly 1.2 in layer 2/3 pyramidal neurons. We simultaneously capture cortical hemodynamics and cell type-specific voltage activity while mice display psychedelic shaking behavior. (3) Shaking behavior is preceded by high-frequency oscillations and overlaps with low-frequency oscillations in the motor cortex. Oscillations spectrally mirror the rhythmics of shaking behavior and reflect layer 2/3 pyramidal cell activity complemented by hemodynamics. (4) Our results reveal a clear cortical fingerprint of serotonin-2A-receptor-mediated shaking behavior and open a promising methodological avenue relating a cross-mammalian psychedelic effect to cell-type specific brain dynamics.


Asunto(s)
Alucinógenos , Animales , Alucinógenos/farmacología , Mamíferos , Células Piramidales , Receptor de Serotonina 5-HT2A , Ratones
4.
Dev Growth Differ ; 63(8): 417-428, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34411280

RESUMEN

The brain consists of neural circuits, which are assemblies of various neuron types. For understanding how the brain works, it is essential to identify the functions of each type of neuron and neuronal circuits. Recent advances in our understanding of brain function and its development have been achieved using light to detect neuronal activity. Optical measurement of membrane potentials through voltage imaging is a desirable approach, enabling fast, direct, and simultaneous detection of membrane potentials in a population of neurons. Its high speed and directness can help detect synaptic and action potentials and hyperpolarization, which encode critical information for brain function. Here, we describe in vivo voltage imaging procedures that we have recently established using zebrafish, a powerful animal model in developmental biology and neuroscience. By applying two types of voltage sensors, voltage-sensitive dyes (VSDs, Di-4-ANEPPS) and genetically encoded voltage indicators (GEVIs, ASAP1), spatiotemporal dynamics of voltage signals can be detected in the whole cerebellum and spinal cord in awake fish at single-cell and neuronal population levels. Combining this method with other approaches, such as optogenetics, behavioral analysis, and electrophysiology would facilitate a deeper understanding of the network dynamics of the brain circuitry and its development.


Asunto(s)
Colorantes , Pez Cebra , Potenciales de Acción , Animales , Neuronas , Optogenética
5.
Toxicol Appl Pharmacol ; 405: 115205, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32835763

RESUMEN

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.


Asunto(s)
Antiinfecciosos/toxicidad , Calcio/metabolismo , Citoplasma/efectos de los fármacos , Mastocitos/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Triclosán/toxicidad , Canales de Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Citoplasma/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mastocitos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Linfocitos T/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(51): 14852-14857, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930302

RESUMEN

Electrophysiological studies of excitable organs usually focus on action potential (AP)-generating cells, whereas nonexcitable cells are generally considered as barriers to electrical conduction. Whether nonexcitable cells may modulate excitable cell function or even contribute to AP conduction via direct electrotonic coupling to AP-generating cells is unresolved in the heart: such coupling is present in vitro, but conclusive evidence in situ is lacking. We used genetically encoded voltage-sensitive fluorescent protein 2.3 (VSFP2.3) to monitor transmembrane potential in either myocytes or nonmyocytes of murine hearts. We confirm that VSFP2.3 allows measurement of cell type-specific electrical activity. We show that VSFP2.3, expressed solely in nonmyocytes, can report cardiomyocyte AP-like signals at the border of healed cryoinjuries. Using EM-based tomographic reconstruction, we further discovered tunneling nanotube connections between myocytes and nonmyocytes in cardiac scar border tissue. Our results provide direct electrophysiological evidence of heterocellular electrotonic coupling in native myocardium and identify tunneling nanotubes as a possible substrate for electrical cell coupling that may be in addition to previously discovered connexins at sites of myocyte-nonmyocyte contact in the heart. These findings call for reevaluation of cardiac nonmyocyte roles in electrical connectivity of the heterocellular heart.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Miocardio/citología , Miocitos Cardíacos/metabolismo , Optogenética , Potenciales de Acción , Animales , Proteínas Bacterianas/metabolismo , Comunicación Celular , Recuento de Células , Membrana Celular/metabolismo , Conductividad Eléctrica , Femenino , Fibroblastos/metabolismo , Corazón/fisiología , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Células Musculares/metabolismo
7.
Neurophotonics ; 11(3): 033402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38288247

RESUMEN

Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.

8.
Neurophotonics ; 11(2): 024201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38090225

RESUMEN

Significance: Efforts starting more than 20 years ago led to increasingly well performing genetically encoded voltage indicators (GEVIs) for optical imaging at wavelengths <600 nm. Although optical imaging in the >600 nm wavelength range has many advantages over shorter wavelength approaches for mesoscopic in vivo monitoring of neuronal activity in the mammalian brain, the availability and evaluation of well performing near-infrared GEVIs are still limited. Aim: Here, we characterized two recent near-infrared GEVIs, Archon1 and nirButterfly, to support interested tool users in selecting a suitable near-infrared GEVI for their specific research question requirements. Approach: We characterized side-by-side the brightness, sensitivity, and kinetics of both near-infrared GEVIs in a setting focused on population imaging. Results: We found that nirButterfly shows seven-fold higher brightness than Archon1 under the same conditions and faster kinetics than Archon1 for population imaging without cellular resolution. But Archon1 showed larger signals than nirButterfly. Conclusions: Neither GEVI characterized here surpasses in all three key parameters (brightness, kinetics, and sensitivity), so there is no unequivocal preference for one of the two. Our side-by-side characterization presented here provides new information for future in vitro and ex vivo experimental designs.

9.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-34999824

RESUMEN

Cells can be affected by several causes of osmotic stress, by which they are forced to adapt. An essential aspect of adaptation is ion regulation, and many insights into such complex processes can be obtained through measurement of the plasma membrane potential (PMP) of cells during stress. We recently established genetically encoded voltage indicator proteins that could be utilized to report the yeast PMP change in real time. In this work, we employed this method to monitor the early change in the PMP of yeast Saccharomyces cerevisiae with intact cell wall, immediately following hyperosmotic up-shock due to various stress agents. The results pointed to differential effects of NaCl, sorbitol and polyethylene glycol (PEG) 6000. Yeast PMP was more responsive toward PEG 6000 than NaCl and sorbitol at comparable osmotic pressure, and PEG 6000 stimulated the largest response magnitude, followed by sorbitol and NaCl, respectively. After prolonged treatment, PEG 6000 also instigated distinct cell morphology from NaCl and sorbitol. Accordingly, this study presents new evidence supporting multiple pathways underlying yeast adaptation to varying hyperosmotic conditions, enabled through the optical physiology approach. Our findings promote better understanding of the yeast cellular response to hyperosmotic stress, with tenable relevance to the physiologically related plant cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Potenciales de la Membrana , Presión Osmótica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/metabolismo
10.
Front Cell Neurosci ; 16: 1039957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733665

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity. However, conventional GEVIs perturb membrane integrity through inserting multiple copies of transmembrane domains into the plasma membrane. To circumvent large add-ons to the plasma membrane, we used a minimally invasive novel hybrid dark quencher GEVI to record the physiological and pathological firing patterns of hiPSCs-derived sensory neurons from patients with inherited erythromelalgia, a chronic pain condition associated with recurrent attacks of redness and swelling in the distal extremities. We observed considerable differences in action potential firing patterns between patient and control neurons that were previously overlooked with other recording methods. Our system also performed well in hiPSC-derived forebrain neurons where it detected spontaneous synchronous bursting behavior, thus opening the path to future applications in other cell types and disease models including Parkinson's disease, Alzheimer's disease, epilepsy, and schizophrenia, conditions associated with disturbances of neuronal activity and synchrony.

11.
Neurophotonics ; 7(3): 035006, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32904628

RESUMEN

Significance: Light-field microscopy (LFM) enables high signal-to-noise ratio (SNR) and light efficient volume imaging at fast frame rates. Voltage imaging with genetically encoded voltage indicators (GEVIs) stands to particularly benefit from LFM's volumetric imaging capability due to high required sampling rates and limited probe brightness and functional sensitivity. Aim: We demonstrate subcellular resolution GEVI light-field imaging in acute mouse brain slices resolving dendritic voltage signals in three spatial dimensions. Approach: We imaged action potential-induced fluorescence transients in mouse brain slices sparsely expressing the GEVI VSFP-Butterfly 1.2 in wide-field microscopy (WFM) and LFM modes. We compared functional signal SNR and localization between different LFM reconstruction approaches and between LFM and WFM. Results: LFM enabled three-dimensional (3-D) localization of action potential-induced fluorescence transients in neuronal somata and dendrites. Nonregularized deconvolution decreased SNR with increased iteration number compared to synthetic refocusing but increased axial and lateral signal localization. SNR was unaffected for LFM compared to WFM. Conclusions: LFM enables 3-D localization of fluorescence transients, therefore eliminating the need for structures to lie in a single focal plane. These results demonstrate LFM's potential for studying dendritic integration and action potential propagation in three spatial dimensions.

12.
Front Plant Sci ; 10: 1267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681370

RESUMEN

We have developed tools and performed pilot experiments to test the hypothesis that an intracellular ion-based signaling pathway, provoked by an extracellular stimulus acting at the cell surface, can influence interphase chromosome dynamics and chromatin-bound proteins in the nucleus. The experimental system employs chromosome-specific fluorescent tags and the genome-encoded fluorescent pH sensor SEpHluorinA227D, which has been targeted to various intracellular membranes and soluble compartments in root cells of Arabidopsis thaliana. We are using this system and three-dimensional live cell imaging to visualize whether fluorescent-tagged interphase chromosome sites undergo changes in constrained motion concurrently with reductions in membrane-associated pH elicited by extracellular ATP, which is known to trigger a cascade of events in plant cells including changes in calcium ion concentrations, pH, and membrane potential. To examine possible effects of the proposed ion-based signaling pathway directly at the chromatin level, we generated a pH-sensitive fluorescent DNA-binding protein that allows pH changes to be monitored at specific genomic sites. Results obtained using these tools support the existence of a rapid, ion-based signaling pathway that initiates at the cell surface and reaches the nucleus to induce alterations in interphase chromatin mobility and the surrounding pH of chromatin-bound proteins. Such a pathway could conceivably act under natural circumstances to allow external stimuli to swiftly influence gene expression by affecting interphase chromosome movement and the structures and/or activities of chromatin-associated proteins.

13.
Mol Brain ; 11(1): 32, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866136

RESUMEN

Recent interest in high-throughput recording of neuronal activity has motivated rapid improvements in genetically encoded calcium or voltage indicators (GECIs or GEVIs) for all-optical electrophysiology. Among these probes, the ASAPs, a series of voltage indicators based on a variant of circularly permuted green fluorescent protein (cpGFP) and a conjugated voltage sensitive domain (VSD), are capable of detecting both action potentials and subthreshold neuronal activities. Here we show that the ASAPs, when excited by blue light, undergo reversible photobleaching. We find that this fluorescence loss induced by excitation with 470-nm light can be substantially reversed by low-intensity 405-nm light. We demonstrate that 405-nm and 470-nm co-illumination significantly improved brightness and thereby signal-to-noise ratios during voltage imaging compared to 470-nm illumination alone. Illumination with a single wavelength of 440-nm light also produced similar improvements. We hypothesize that reversible photobleaching is related to cis-trans isomerization and protonation of the GFP chromophore of ASAP proteins. Amino acids that influence chromophore isomerization are potential targets of point mutations for future improvements.


Asunto(s)
Luz , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Sondas Moleculares/química , Mutación/genética , Optogenética
14.
Cell Rep ; 20(5): 1100-1110, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768195

RESUMEN

Dendritic spines receive the majority of excitatory inputs in many mammalian neurons, but their biophysical properties and exact role in dendritic integration are still unclear. Here, we study spine electrical properties in cultured hippocampal neurons using an improved genetically encoded voltage indicator (ArcLight) and two-photon glutamate uncaging. We find that back-propagating action potentials (bAPs) fully invade dendritic spines. However, uncaging excitatory post-synaptic potentials (uEPSPs) generated by glutamate photorelease, ranging from 4 to 27 mV in amplitude, are attenuated by up to 4-fold as they propagate to the parent dendrites. Finally, the simultaneous occurrence of bAPs and uEPSPs results in sublinear summation of membrane potential. Our results demonstrate that spines can behave as electric compartments, reducing the synaptic inputs injected into the cell, while receiving bAPs are unmodified. The attenuation of EPSPs by spines could have important repercussions for synaptic plasticity and dendritic integration.


Asunto(s)
Potenciales de Acción/fisiología , Espinas Dendríticas/metabolismo , Ácido Glutámico/metabolismo , Potenciales Sinápticos/fisiología , Animales , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica
15.
Physiol Rep ; 3(7)2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26229003

RESUMEN

Understanding how behavior emerges from brain electrical activity is one of the ultimate goals of neuroscience. To achieve this goal we require methods for large-scale recording of the electrical activity of specific neuronal circuits. A very promising approach is to use optical reporting of membrane voltage transients, particularly if the voltage reporter is genetically targeted to specific neuronal populations. Targeting in this way allows population signals to be recorded and interpreted without blindness to neuronal diversity. Here, we evaluated the voltage-sensitive fluorescent protein, VSFP Butterfly 2.1, a genetically encoded voltage indicator (GEVI), for monitoring electrical activity of layer 2/3 cortical pyramidal neurons in mouse brain slices. Standard widefield fluorescence and two-photon imaging revealed robust, high signal-to-noise ratio read-outs of membrane voltage transients that are predominantly synaptic in nature and can be resolved as discrete areas of synaptically connected layer 2/3 neurons. We find that targeted expression of this GEVI in the cortex provides a flexible and promising tool for the analysis of L2/3 cortical network function.

16.
Elife ; 4: e10482, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26599732

RESUMEN

Voltage-sensing domains (VSDs) underlie the movement of voltage-gated ion channels, as well as the voltage-sensitive fluorescent responses observed from a common class of genetically encoded voltage indicators (GEVIs). Despite the widespread use and potential utility of these GEVIs, the biophysical underpinnings of the relationship between VSD movement and fluorophore response remain unclear. We investigated the recently developed GEVI ArcLight, and its close variant Arclight', at both the single-molecule and macroscopic levels to better understand their characteristics and mechanisms of activity. These studies revealed a number of previously unobserved features of ArcLight's behavior, including millisecond-scale fluorescence fluctuations in single molecules as well as a previously unreported delay prior to macroscopic fluorescence onset. Finally, these mechanistic insights allowed us to improve the optical response of ArcLight to fast or repetitive pulses with the development of ArcLightning, a novel GEVI with improved kinetics.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Fluorometría/métodos , Activación del Canal Iónico , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana , Animales , Xenopus laevis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda