Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619982

RESUMEN

Microbial strategies for resource use are an essential determinant of their fitness in complex habitats. When facing environments with multiple nutrients, microbes often use them sequentially according to a preference hierarchy, resulting in well-known patterns of diauxic growth. In theory, the evolutionary diversification of metabolic hierarchies could represent a mechanism supporting coexistence and biodiversity by enabling temporal segregation of niches. Despite this ecologically critical role, the extent to which substrate preference hierarchies can evolve and diversify remains largely unexplored. Here, we used genome-scale metabolic modeling to systematically explore the evolution of metabolic hierarchies across a vast space of metabolic network genotypes. We find that only a limited number of metabolic hierarchies can readily evolve, corresponding to the most commonly observed hierarchies in genome-derived models. We further show how the evolution of novel hierarchies is constrained by the architecture of central metabolism, which determines both the propensity to change ranks between pairs of substrates and the effect of specific reactions on hierarchy evolution. Our analysis sheds light on the genetic and mechanistic determinants of microbial metabolic hierarchies, opening new research avenues to understand their evolution, evolvability, and ecology.


Asunto(s)
Biodiversidad , Redes y Vías Metabólicas , Redes y Vías Metabólicas/genética , Genotipo
2.
Mol Biol Evol ; 40(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37399035

RESUMEN

Phage therapy is a promising method for the treatment of multidrug-resistant bacterial infections. However, its long-term efficacy depends on understanding the evolutionary effects of the treatment. Current knowledge of such evolutionary effects is lacking, even in well-studied systems. We used the bacterium Escherichia coli C and its bacteriophage ΦX174, which infects cells using host lipopolysaccharide (LPS) molecules. We first generated 31 bacterial mutants resistant to ΦX174 infection. Based on the genes disrupted by these mutations, we predicted that these E. coli C mutants collectively produce eight unique LPS structures. We then developed a series of evolution experiments to select for ΦX174 mutants capable of infecting the resistant strains. During phage adaptation, we distinguished two types of phage resistance: one that was easily overcome by ΦX174 with few mutational steps ("easy" resistance) and one that was more difficult to overcome ("hard" resistance). We found that increasing the diversity of the host and phage populations could accelerate the adaptation of phage ΦX174 to overcome the hard resistance phenotype. From these experiments, we isolated 16 ΦX174 mutants that, together, can infect all 31 initially resistant E. coli C mutants. Upon determining the infectivity profiles of these 16 evolved phages, we uncovered 14 distinct profiles. Given that only eight profiles are anticipated if the LPS predictions are correct, our findings highlight that the current understanding of LPS biology is insufficient to accurately forecast the evolutionary outcomes of bacterial populations infected by phage.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Lipopolisacáridos/farmacología , Bacteriófagos/genética , Mutación , Fenotipo
3.
Curr Top Microbiol Immunol ; 439: 1-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592242

RESUMEN

The landscape paradigm is revisited in the light of evolution in simple systems. A brief overview of different classes of fitness landscapes is followed by a more detailed discussion of the RNA model, which is currently the only evolutionary model that allows for a comprehensive molecular analysis of a fitness landscape. Neutral networks of genotypes are indispensable for the success of evolution. Important insights into the evolutionary mechanism are gained by considering the topology of sequence and shape spaces. The dynamic concept of molecular quasispecies is viewed in the light of the landscape paradigm. The distribution of fitness values in state space is mirrored by the population structures of mutant distributions. Two classes of thresholds for replication error or mutations are important: (i) the-conventional-genotypic error threshold, which separates ordered replication from random drift on neutral networks, and (ii) a phenotypic error threshold above which the molecular phenotype is lost. Empirical landscapes are reviewed and finally, the implications of the landscape concept for virus evolution are discussed.


Asunto(s)
Modelos Genéticos , Virus , Genotipo , Fenotipo , Mutación , ARN/química , ARN/genética , Virus/genética , Evolución Molecular , Aptitud Genética , Evolución Biológica
4.
Semin Cell Dev Biol ; 88: 67-79, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29782925

RESUMEN

Canalization, or robustness to genetic or environmental perturbations, is fundamental to complex organisms. While there is strong evidence for canalization as an evolved property that varies among genotypes, the developmental and genetic mechanisms that produce this phenomenon are very poorly understood. For evolutionary biology, understanding how canalization arises is important because, by modulating the phenotypic variation that arises in response to genetic differences, canalization is a determinant of evolvability. For genetics of disease in humans and for economically important traits in agriculture, this subject is important because canalization is a potentially significant cause of missing heritability that confounds genomic prediction of phenotypes. We review the major lines of thought on the developmental-genetic basis for canalization. These fall into two groups. One proposes specific evolved molecular mechanisms while the other deals with robustness or canalization as a more general feature of development. These explanations for canalization are not mutually exclusive and they overlap in several ways. General explanations for canalization are more likely to involve emergent features of development than specific molecular mechanisms. Disentangling these explanations is also complicated by differences in perspectives between genetics and developmental biology. Understanding canalization at a mechanistic level will require conceptual and methodological approaches that integrate quantitative genetics and developmental biology.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Epistasis Genética , Estudios de Asociación Genética , Genotipo , Fenotipo , Adaptación Fisiológica/genética , Animales , Biología Evolutiva/métodos , Redes Reguladoras de Genes , Interacción Gen-Ambiente , Técnicas Genéticas , Variación Genética , Genética , Humanos , Plantas/genética , Carácter Cuantitativo Heredable , Selección Genética
5.
Proc Natl Acad Sci U S A ; 112(7): 2103-8, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646408

RESUMEN

To what extent does the dynamical mechanism producing a specific biological phenotype bias the ability to evolve into novel phenotypes? We use the interpretation of a morphogen gradient into a single stripe of gene expression as a model phenotype. Although there are thousands of three-gene circuit topologies that can robustly develop a stripe of gene expression, the vast majority of these circuits use one of just six fundamentally different dynamical mechanisms. Here we explore the potential for gene circuits that use each of these six mechanisms to evolve novel phenotypes such as multiple stripes, inverted stripes, and gradients of gene expression. Through a comprehensive and systematic analysis, we find that circuits that use alternative mechanisms differ in the likelihood of reaching novel phenotypes through mutation. We characterize the phenotypic transitions and identify key ingredients of the evolutionary potential, such as sensitive interactions and phenotypic hubs. Finally, we provide an intuitive understanding on how the modular design of a particular mechanism favors the access to novel phenotypes. Our work illustrates how the dynamical mechanism by which an organism develops constrains how it can evolve. It is striking that these dynamical mechanisms and their impact on evolvability can be observed even for such an apparently simple patterning task, performed by just three-node circuits.


Asunto(s)
Evolución Molecular , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Fenotipo
6.
Mol Ecol ; 26(5): 1285-1305, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28100011

RESUMEN

Identifying causal genetic variants underlying heritable phenotypic variation is a long-standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole-genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild-caught zebra finches. Then, we validated the most promising SNP-phenotype associations (n = 25 SNPs) in 5228 birds from four populations. Genotype-phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.


Asunto(s)
Pinzones/genética , Genética de Población , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Pinzones/anatomía & histología , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
7.
J Exp Bot ; 68(20): 5431-5438, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28992256

RESUMEN

Epistasis and genetic variance heterogeneity are two non-additive genetic inheritance patterns that are often, but not always, related. Here we use theoretical examples and empirical results from earlier analyses of experimental data to illustrate the connection between the two. This includes an introduction to the relationship between epistatic gene action, statistical epistasis, and genetic variance heterogeneity, and a brief discussion about how genetic processes other than epistasis can also give rise to genetic variance heterogeneity.


Asunto(s)
Epistasis Genética/genética , Variación Genética/genética , Plantas/genética , Patrón de Herencia , Modelos Genéticos
8.
Life (Basel) ; 13(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36983865

RESUMEN

An important question in evolutionary biology is whether (and in what ways) genotype-phenotype (GP) map biases can influence evolutionary trajectories. Untangling the relative roles of natural selection and biases (and other factors) in shaping phenotypes can be difficult. Because the RNA secondary structure (SS) can be analyzed in detail mathematically and computationally, is biologically relevant, and a wealth of bioinformatic data are available, it offers a good model system for studying the role of bias. For quite short RNA (length L≤126), it has recently been shown that natural and random RNA types are structurally very similar, suggesting that bias strongly constrains evolutionary dynamics. Here, we extend these results with emphasis on much larger RNA with lengths up to 3000 nucleotides. By examining both abstract shapes and structural motif frequencies (i.e., the number of helices, bonds, bulges, junctions, and loops), we find that large natural and random structures are also very similar, especially when contrasted to typical structures sampled from the spaces of all possible RNA structures. Our motif frequency study yields another result, where the frequencies of different motifs can be used in machine learning algorithms to classify random and natural RNA with high accuracy, especially for longer RNA (e.g., ROC AUC 0.86 for L = 1000). The most important motifs for classification are the number of bulges, loops, and bonds. This finding may be useful in using SS to detect candidates for functional RNA within 'junk' DNA regions.

9.
J R Soc Interface ; 20(204): 20230169, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37491910

RESUMEN

Phenotype robustness, defined as the average mutational robustness of all the genotypes that map to a given phenotype, plays a key role in facilitating neutral exploration of novel phenotypic variation by an evolving population. By applying results from coding theory, we prove that the maximum phenotype robustness occurs when genotypes are organized as bricklayer's graphs, so-called because they resemble the way in which a bricklayer would fill in a Hamming graph. The value of the maximal robustness is given by a fractal continuous everywhere but differentiable nowhere sums-of-digits function from number theory. Interestingly, genotype-phenotype maps for RNA secondary structure and the hydrophobic-polar (HP) model for protein folding can exhibit phenotype robustness that exactly attains this upper bound. By exploiting properties of the sums-of-digits function, we prove a lower bound on the deviation of the maximum robustness of phenotypes with multiple neutral components from the bricklayer's graph bound, and show that RNA secondary structure phenotypes obey this bound. Finally, we show how robustness changes when phenotypes are coarse-grained and derive a formula and associated bounds for the transition probabilities between such phenotypes.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Genotipo , Fenotipo , Mutación , ARN/genética
10.
J R Soc Interface ; 19(197): 20220694, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36514888

RESUMEN

Unravelling the structure of genotype-phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover simplicity bias in GP maps, an exponentially decaying upper bound in phenotype probability with the increasing phenotype descriptional complexity. This means that phenotypes with many genotypes assigned via the GP map must be simple, while complex phenotypes must have few genotypes assigned. Here, we use similar arguments to bound the probability P(x → y) that phenotype x, upon random genetic mutation, transitions to phenotype y. The bound is [Formula: see text], where [Formula: see text] is the estimated conditional complexity of y given x, quantifying how much extra information is required to make y given access to x. This upper bound is related to the conditional form of algorithmic probability from AIT. We demonstrate the practical applicability of our derived bound by predicting phenotype transition probabilities (and other related quantities) in simulations of RNA and protein secondary structures. Our work contributes to a general mathematical understanding of GP maps and may facilitate the prediction of transition probabilities directly from examining phenotype themselves, without utilizing detailed knowledge of the GP map.


Asunto(s)
Teoría de la Información , Proteínas , Fenotipo , Genotipo , Mutación , Probabilidad , Modelos Genéticos
11.
Genome Biol Evol ; 11(9): 2439-2456, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290967

RESUMEN

Hepatoviruses show an intriguing deviated codon usage, suggesting an evolutionary signature. Abundant and rare codons in the cellular genome are scarce in the human hepatitis A virus (HAV) genome, while intermediately abundant host codons are abundant in the virus. Genotype-phenotype maps, or fitness landscapes, are a means of representing a genotype position in sequence space and uncovering how genotype relates to phenotype and fitness. Using genotype-phenotype maps of the translation efficiency, we have shown the critical role of the HAV capsid codon composition in regulating translation and determining its robustness. Adaptation to an environmental perturbation such as the artificial induction of cellular shutoff-not naturally occurring in HAV infection-involved movements in the sequence space and dramatic changes of the translation efficiency. Capsid rare codons, including abundant and rare codons of the cellular genome, slowed down the translation efficiency in conditions of no cellular shutoff. In contrast, rare capsid codons that are abundant in the cellular genome were efficiently translated in conditions of shutoff. Capsid regions very rich in slowly translated codons adapt to shutoff through sequence space movements from positions with highly robust translation to others with diminished translation robustness. These movements paralleled decreases of the capsid physical and biological robustness, and resulted in the diversification of capsid phenotypes. The deviated codon usage of extant hepatoviruses compared with that of their hosts may suggest the occurrence of a virus ancestor with an optimized codon usage with respect to an unknown ancient host.


Asunto(s)
Proteínas de la Cápside/genética , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/fisiología , Extensión de la Cadena Peptídica de Translación , Adaptación Fisiológica , Proteínas de la Cápside/metabolismo , Codón , Humanos , Mutación , Biosíntesis de Proteínas , Pliegue de Proteína , ARN de Transferencia/metabolismo
12.
Evol Appl ; 12(9): 1721-1742, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31548853

RESUMEN

With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep mutational scanning assays, capable of scoring comprehensive libraries of genotypes for fitness and a variety of phenotypes in massively parallel fashion. The resulting empirical genotype-fitness maps pave the way to predictive models, potentially accelerating our ability to anticipate the behaviour of pathogen and cancerous cell populations from sequencing data. Besides from cellular fitness, phenotypes of direct application in industry (e.g. enzyme activity) and medicine (e.g. antibody binding) can be quantified and even selected directly by these assays. This review discusses the technological basis of and recent developments in massively parallel genetics, along with the trends it is uncovering in the genotype-phenotype relationship (distribution of mutation effects, epistasis), their possible mechanistic bases and future directions for advancing towards the goal of predictive genetics.

13.
Mol Ecol Resour ; 18(4): 739-754, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29575806

RESUMEN

Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations.


Asunto(s)
Estudios de Asociación Genética/métodos , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Animales , Mapeo Cromosómico , Frecuencia de los Genes
14.
Stud Hist Philos Biol Biomed Sci ; 58: 107-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26868415

RESUMEN

Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces.


Asunto(s)
Evolución Biológica , Animales , Genotipo , Matemática , Modelos Genéticos , Fenotipo , Selección Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda