Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
BMC Biol ; 22(1): 83, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609948

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST). RESULTS: Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity. CONCLUSIONS: Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.


Asunto(s)
Glioblastoma , Factores de Transcripción , Humanos , Glioblastoma/tratamiento farmacológico , Regulación de la Expresión Génica , Encéfalo , Agresión
2.
Biochem Biophys Res Commun ; 711: 149897, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608433

RESUMEN

PURPOSE: Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral hypoglycemic drugs and are used for type II diabetes. Previous studies showed that DPP-4 expression is observed in several tumor types and DPP-4 inhibitors suppress the tumor progression on murine tumor models. In this study, we evaluated the role of DPP-4 and the antitumor effect of a DPP-4 inhibitor, linagliptin, on glioblastoma (GBM). METHODS: We analyzed DPP-4 expression in glioma patients by the public database. We also analyzed DPP-4 expression in GBM cells and the murine GBM model. Then, we evaluated the cell viability, cell proliferation, cell migration, and expression of some proteins on GBM cells with linagliptin. Furthermore, we evaluated the antitumor effect of linagliptin in the murine GBM model. RESULTS: The upregulation of DPP-4 expression were observed in human GBM tissue and murine GBM model. In addition, DPP-4 expression levels were found to positively correlate with the grade of glioma patients. Linagliptin suppressed cell viability, cell proliferation, and cell migration in GBM cells. Linagliptin changed the expression of phosphorylated NF-kB, cell cycle, and cell adhesion-related proteins. Furthermore, oral administration of linagliptin decreases the tumor progression in the murine GBM model. CONCLUSION: Inhibition of DPP-4 by linagliptin showed the antitumor effect on GBM cells and the murine GBM model. The antitumor effects of linagliptin is suggested to be based on the changes in the expression of several proteins related to cell cycle and cell adhesion via the regulation of phosphorylated NF-kB. This study suggested that DPP-4 inhibitors could be a new therapeutic strategy for GBM.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Progresión de la Enfermedad , Glioblastoma , Linagliptina , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Linagliptina/farmacología , Linagliptina/uso terapéutico , Animales , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Dipeptidil Peptidasa 4/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Masculino , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Cancer Cell Int ; 24(1): 160, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715021

RESUMEN

In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.

4.
J Neurooncol ; 168(1): 77-89, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492191

RESUMEN

PURPOSE: Aggressive resection in surgically-accessible glioblastoma (GBM) correlates with improved survival over less extensive resections. However, the clinical impact of performing a biopsy before definitive resection have not been previously evaluated. METHODS: We analyzed 17,334 GBM patients from the NCDB from 2010-2014. We categorized them into: "upfront resection" and "biopsy followed by resection". The outcomes of interes included OS, 30-day readmission/mortality, 90-day mortality, and length of hospital stay (LOS). The Kaplan-Meier methods and accelerated failure time (AFT) models were applied for survival analysis. Multivariable binary logistic regression were performed to compare differences among groups. Multiple imputation and propensity score matching (PSM) were conducted for validation. RESULTS: "Upfront resection" had superior OS over "biopsy followed by resection" (median OS:12.4 versus 11.1 months, log-rank p = 0.001). Similarly, multivariable AFT models favored "upfront resection" (time ratio[TR]:0.83, 95%CI: 0.75-0.93, p = 0.001). Patients undergoing "upfront gross-total resection (GTR)" had higher OS over "upfront subtotal resection (STR)", "GTR following STR", and "GTR or STR following initial biopsy" (14.4 vs. 10.3, 13.5, 13.3, and 9.1 months;TR: 1.00 [Ref.], 0.75, 0.82, 0.88, and 0.67). Recent years of diagnosis, higher income, facilities located in Southern regions, and treatment at academic facilities were significantly associated with the higher likelihood of undergoing upfront resection. Multivariable regression showed a decreased 30 and 90-day mortality for patients undergoing "upfront resection", 73% and 44%, respectively (p < 0.001). CONCLUSIONS: Pre-operative biopsies for surgically accessible GBM are associated with worse survival despite subsequent resection compared to patients undergoing upfront resection.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/cirugía , Glioblastoma/patología , Glioblastoma/mortalidad , Femenino , Masculino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Persona de Mediana Edad , Biopsia , Anciano , Procedimientos Neuroquirúrgicos/métodos , Bases de Datos Factuales , Adulto , Tiempo de Internación/estadística & datos numéricos
5.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224404

RESUMEN

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Asunto(s)
Neoplasias Encefálicas , Glioma , Guanina , Humanos , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Dacarbazina/farmacología , ADN/genética , ADN/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/genética , Temozolomida/farmacología
6.
Cell Biol Toxicol ; 40(1): 44, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862832

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS: The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS: We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS: Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION: Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.


Asunto(s)
Movimiento Celular , Proliferación Celular , Glioblastoma , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Factores de Transcripción NFATC , Neovascularización Patológica , Proteínas Proto-Oncogénicas c-fos , Humanos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/irrigación sanguínea , Línea Celular Tumoral , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Animales , Proliferación Celular/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Movimiento Celular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Regulación Neoplásica de la Expresión Génica , Ratones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/irrigación sanguínea , Ratones Desnudos
7.
Neuropathology ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448392

RESUMEN

Glioblastoma (GBM) is the most prevalent primary intracranial tumor. Temozolomide (TMZ) is the first-line chemotherapy for GBM. Nonetheless, the development of TMZ resistance has become a main cause of treatment failure in GBM patients. Evidence suggests that neuropilin-1 (NRP-1) silencing can attenuate GBM cell resistance to TMZ. This study aims to determine potential mechanisms by which NRP-1 affects TMZ resistance in GBM. The parental U251 and LN229 GBM cells were exposed to increasing concentrations of TMZ to construct TMZ-resistant GBM cells (U251/TMZ, LN229/TMZ). BALB/c nude mice were injected with U251/TMZ cells to establish the xenograft mouse model. Functional experiments were carried out to examine NRP-1 functions. Western blotting and real-time quantitative polymerase chain reaction were used to evaluate molecular protein and mRNA expression, respectively. Immunohistochemical staining showed NRP-1 and STAT1 expression in mouse tumors. The results showed that NRP-1 was highly expressed in TMZ-resistant cells. Moreover, knocking down NRP-1 attenuated the TMZ resistance of U251/TMZ cells, while upregulating NRP-1 enhanced TMZ resistance of the parental cells. NRP-1 silencing elevated GBM cell sensitivity to TMZ in tumor-bearing mice. Depleting NRP-1 reduced STAT1, p53, and p21 expression in U251/TMZ cells. STAT1 depletion offset NRP-1 silencing evoked attenuation of GBM cell resistance to TMZ. Collectively, our study reveals that NRP-1 enhances TMZ resistance in GBM possibly by regulating the STAT1/p53/p21 axis.

8.
Neurosurg Rev ; 47(1): 120, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498065

RESUMEN

PURPOSE: Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS: Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS: Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION: The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Glioma/diagnóstico por imagen , Glioma/cirugía , Bases de Datos Factuales , Neuronavegación , Neurocirujanos
9.
Semin Cancer Biol ; 82: 176-183, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33453403

RESUMEN

Glioblastoma (GBM) and other malignant tumours consist of heterogeneous cancer cells, including GBM-initiating cells (GICs). This heterogeneity is likely to arise from the following: different sets of genetic mutations and epigenetic modifications, which GICs gain in the transformation process; differences in cells of origin, such as stem cells, precursor cells or differentiated cells; and the cancer microenvironment, in which GICs communicate with neural cells, endothelial cells and immune cells. Furthermore, considering that various types of GICs can be generated at different time points of the transformation process, GBM very likely consists of heterogeneous GICs and their progeny. Because cancer cell heterogeneity is responsible for therapy resistance, it is crucial to develop methods of reducing such heterogeneity. Here, I summarize how GIC heterogeneity is generated in the transformation process and present how cell heterogeneity in cancer can be addressed based on recent findings.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Células Endoteliales/metabolismo , Epigénesis Genética , Glioblastoma/metabolismo , Humanos , Mutación , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/genética
10.
Biochem Biophys Res Commun ; 675: 130-138, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473527

RESUMEN

The mechanism of dihydroartemisinin (DHA) inhibiting the migration and invasion of glioma in an ROS-DSB-dependent manner has been revealed. Extrachromosomal DNAs (ecDNAs) which are generated by DNA damage have great potential in glioma treatment. However, the role of ecDNAs in DHA's pharmacological mechanisms in glioma is still unknown. In this study, DHA was found to inhibit proliferative activity, increase ROS levels and promote apoptosis in U87 and U251 cells. Migration and invasion have also been suppressed. ecDNA expression profiles were found in gliomas. EcDNA-BASP1 was found, by means of bioinformatics analysis, to be present in GBM tissues and positively correlated with patient prognosis. Proliferation, migration and invasion were upregulated after knockdown of ecDNA-BASP1. The expression of vimentin and N-cadherin also had the same tendency. Finally, we found that the ecDNA-BASP1 content in nude mouse transplant tumors was significantly increased after DHA treatment, which might exert a better suppressive effect on glioma. The upregulation of tumor suppressor ecDNA-BASP1 played an important role in the suppression of glioma progression induced by DHA. EcDNA-BASP1 may inhibit glioma migration and invasion through repressing epithelial-mesenchymal transition (EMT).


Asunto(s)
Neoplasias Encefálicas , ADN Forma B , Glioma , Animales , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos
11.
Cancer Cell Int ; 23(1): 98, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210528

RESUMEN

Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.

12.
Cell Commun Signal ; 21(1): 115, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208730

RESUMEN

Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Humanos , Glioblastoma/patología , Temozolomida/farmacología , Piroptosis , Neoplasias Encefálicas/metabolismo , Apoptosis , Autofagia , Línea Celular Tumoral
13.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834607

RESUMEN

Based on the postulate that glioblastoma (GBM) tumors generate anti-inflammatory prostaglandins and bile salts to gain immune privilege, we analyzed 712 tumors in-silico from three GBM transcriptome databases for prostaglandin and bile synthesis/signaling enzyme-transcript markers. A pan-database correlation analysis was performed to identify cell-specific signal generation and downstream effects. The tumors were stratified by their ability to generate prostaglandins, their competency in bile salt synthesis, and the presence of bile acid receptors nuclear receptor subfamily 1, group H, member 4 (NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1). The survival analysis indicates that tumors capable of prostaglandin and/or bile salt synthesis are linked to poor outcomes. Tumor prostaglandin D2 and F2 syntheses are derived from infiltrating microglia, whereas prostaglandin E2 synthesis is derived from neutrophils. GBMs drive the microglial synthesis of PGD2/F2 by releasing/activating complement system component C3a. GBM expression of sperm-associated heat-shock proteins appears to stimulate neutrophilic PGE2 synthesis. The tumors that generate bile and express high levels of bile receptor NR1H4 have a fetal liver phenotype and a RORC-Treg infiltration signature. The bile-generating tumors that express high levels of GPBAR1 are infiltrated with immunosuppressive microglia/macrophage/myeloid-derived suppressor cells. These findings provide insight into how GBMs generate immune privilege and may explain the failure of checkpoint inhibitor therapy and provide novel targets for treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Masculino , Humanos , Prostaglandinas , Glioblastoma/metabolismo , Ácidos y Sales Biliares , Privilegio Inmunológico , Semen/metabolismo , Dinoprostona , Prostaglandinas Sintéticas , Neoplasias Encefálicas/metabolismo , Receptores Acoplados a Proteínas G/genética
14.
Molecules ; 28(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630276

RESUMEN

Glioblastoma, the most dangerous and aggressive type of CNS tumor, appears resistant to many chemotherapy drugs. In the patient-derived glioma cell lines NULU and ZAR, which exhibit drug-resistant phenotypes, we investigated the effect of combined AE (Aloe-emodin) and TMZ (temozolomide) and found a significant additive inhibitory effect on cell growth and a promising cytotoxic effect on both cell lines compared to treatment with single agents. We also examined the effect of combined AE and TMZ treatment on the drug-resistance protein MGMT. The results suggest that using AE combined with traditional drugs restores drug resistance in both primary resistant cell lines (NULU and ZAR). Furthermore, migration assays and scratch tests showed that the combined use of AE and TMZ can slow down the colony formation and migration of glioblastoma cells. These convincing results suggest that AE could be a natural adjuvant agent to potentiate the effects of traditional drugs (TMZ) and overcome drug resistance in glioblastoma cells.


Asunto(s)
Aloe , Emodina , Glioblastoma , Humanos , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Línea Celular
15.
J Cell Mol Med ; 26(2): 570-582, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910361

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti-ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN-007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti-ELTD1 and OKN-007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti-ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti-ELTD1 was also shown to significantly affect other pro-angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti-ELTD1 and OKN treatments did not induce a pro-migratory phenotype within the tumours. Anti-ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti-ELTD1 therapies show promise as potential single-agent multi-focal therapies for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Anticuerpos Monoclonales/uso terapéutico , Bencenosulfonatos/farmacología , Bencenosulfonatos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Iminas , Ratones , Óxidos de Nitrógeno , Receptores Acoplados a Proteínas G
16.
Cancer Cell Int ; 22(1): 248, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945579

RESUMEN

A considerable number of glioblastoma (GBM) patients developed drug resistance to Temozolomide (TMZ) during chemotherapy, resulting in therapeutic failure and tumor recurrence. However, the exact mechanism of TMZ chemoresistance in GBM is still poorly clarified. As a novel identified lncRNA, LINC00520 was located on chromosome 14 and overexpressed in multiple human cancers. This study was designed and conducted to investigate the role and underlying mechanism of LINC00520 in GBM chemoresistance to TMZ. The qRT-PCR assay demonstrated that LINC00520 was significantly overexpressed in TMZ-sensitive and/or TMZ-resistant GBM cells (P < 0.001). The silencing of LINC00520 markedly reduced the cell viability, suppressed colony formation, induced cell apoptosis and G1/S phase arrest in TMZ-resistant cells (P < 0.001). In contrast, overexpression of LINC00520 conferred TMZ-resistant phenotype of GBM cells in vitro (P < 0.001). The orthotopic xenograft model was established and the results indicated that the volume of tumor xenografts in vivo was markedly inhibited by TMZ treatment after the silencing of LINC00520 (P < 0.001). Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of transcription factor STAT3 to the promoter regions of LINC00520, suggesting that STAT3 mediated the aberrant expression of LINC00520 in GBM. Further experiments demonstrated that LINC00520 could interact with RNA-binding protein LIN28B to inhibit autophagy and reduce DNA damage, thereby contributing to TMZ chemoresistance in GBM. These findings suggested that STAT3/LINC00520/LIN28B axis might be a promising target to improve TMZ chemoresistance of GBM.

17.
BMC Cancer ; 22(1): 233, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241019

RESUMEN

BACKGROUND: Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients. METHODS: Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan-Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group. RESULTS: A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1. CONCLUSION: Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients' selection for preferential use of immunotherapy in GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Glioblastoma/genética , Transcriptoma/inmunología , Apoptosis/genética , Autofagia/genética , Biomarcadores de Tumor/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Necrosis/genética , Valor Predictivo de las Pruebas , Pronóstico
18.
J Neurooncol ; 160(1): 221-231, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36203027

RESUMEN

PURPOSE: Systemic chemotherapy including monotherapy with temozolomide (TMZ) or bevacizumab (BEV); two-drug combinations, such as irinotecan (IRI) and BEV, TMZ and BEV and a three-drug combination with TMZ, IRI and BEV (TIB) have been used in treating patients with progressive high-grade gliomas including glioblastoma (GBM). Most patients tolerated these regimens well with known side effects of hypertension, proteinuria, and reversible clinical myelosuppression (CM). However, organ- or system- specific toxicities from chemotherapy agents have never been examined by postmortem study. This is the largest cohort used to address this issue in glioma patients. METHODS: Postmortem tissues (from all major systems and organs) were prospectively collected and examined by standard institution autopsy and neuropathological procedures from 76 subjects, including gliomas (N = 68, 44/M, and 24/F) and brain metastases (N = 8, 5/M, and 3/F) between 2009 and 2019. Standard hematoxylin and eosin (H&E) were performed on all major organs including brain specimens. Electronic microscopic (EM) study was carried out on 14 selected subject's kidney samples per standard EM protocol. Medical records were reviewed with adverse events (AEs) analyzed and graded according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.03. A swimmer plot was utilized to visualize the timelines of patient history by treatment group. The binary logistic regression models were performed to explore any associations between treatment strategies and incident myelosuppression. RESULTS: Twenty-four glioma subjects were treated with TIB [median: 5.5 (range: 1-25) cycles] at tumor recurrence. Exposure to IRI significantly increased the frequency of CM (p = 0.05). No unexpected adverse events clinically, or permanent end-organ damage during postmortem examination was identified in glioma subjects who had received standard or prolonged duration of BEV, TMZ or TIB regimen-based chemotherapies except rare events of bone marrow suppression. The most common causes of death (COD) were tumor progression (63.2%, N = 43) followed by aspiration pneumonia (48.5%, N = 33) in glioma subjects. No COD was attributed to acute toxicity from TIB. The study also demonstrated that postmortem kidney specimen is unsuitable for studying renal ultrastructural pathological changes due to autolysis. CONCLUSION: There is no organ or system toxicity by postmortem examinations among glioma subjects who received BEV, TMZ or TIB regimen-based chemotherapies regardless of durations except for occasional bone marrow suppression and reversible myelosuppression clinically. IRI, but not the extended use of TMZ, significantly increased CM in recurrent glioma patients. COD most commonly resulted from glioma tumor progression with infiltration to brain stem and aspiration pneumonia.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neumonía por Aspiración , Humanos , Temozolomida/uso terapéutico , Glioblastoma/terapia , Bevacizumab/uso terapéutico , Irinotecán/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Glioma/tratamiento farmacológico
19.
Cancer Treat Res ; 183: 161-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35551659

RESUMEN

Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptores Quiméricos de Antígenos , Neoplasias Encefálicas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Glioblastoma/tratamiento farmacológico , Humanos , Inmunoterapia Adoptiva/métodos , Estudios Prospectivos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico
20.
Bioorg Med Chem Lett ; 61: 128614, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151865

RESUMEN

High rates of recurrence and treatment resistance in the most common malignant adult brain cancer, glioblastoma (GBM), suggest that monotherapies are not sufficiently effective. Combination therapies are increasingly pursued, but the possibility of adverse drug-drug interactions may preclude clinical implementation. Developing single molecules with multiple targets is a feasible alternative strategy to identify effective and tolerable pharmacotherapies for GBM. Here, we report the development of a novel, first-in-class, dual aurora and lim kinase inhibitor termed F114. Aurora kinases and lim kinases are involved in neoplastic cell division and cell motility, respectively. Due to the importance of these cellular functions, inhibitors of aurora kinases and lim kinases are being pursued separately as anti-cancer therapies. Using in vitro and ex vivo models of GBM, we found that F114 inhibits GBM proliferation and invasion. These results establish F114 as a promising new scaffold for dual aurora/lim kinase inhibitors that may be used in future drug development efforts for GBM, and potentially other cancers.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Quinasas Lim/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Aurora Quinasa A/metabolismo , Aurora Quinasa B/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Quinasas Lim/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda