Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Cancer ; 154(5): 912-925, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699232

RESUMEN

Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated ß-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Gemcitabina , Desoxicitidina , Línea Celular Tumoral , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proliferación Celular , Resistencia a Antineoplásicos
2.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812238

RESUMEN

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Asunto(s)
Apoptosis , Frutas , Galactosa , Glutaminasa , Glutamina , Mitocondrias , Transducción de Señal , Triterpenos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos/farmacología , Triterpenos/química , Humanos , Transducción de Señal/efectos de los fármacos , Línea Celular , Frutas/química , Glutamina/farmacología , Glutamina/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Senescencia Celular/efectos de los fármacos , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo
3.
Ecotoxicol Environ Saf ; 255: 114763, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37032576

RESUMEN

Methyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.


Asunto(s)
Contaminantes Atmosféricos , Trastornos del Metabolismo de los Lípidos , Éteres Metílicos , Ratas , Masculino , Animales , Contaminantes Atmosféricos/metabolismo , Glutaminasa/metabolismo , Metabolismo de los Lípidos , Glutamina , Regulación hacia Arriba , Ratas Wistar , Éteres Metílicos/metabolismo , Isoformas de Proteínas/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 322(5): H749-H761, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275762

RESUMEN

Alterations in cardiac metabolism are strongly associated with the pathogenesis of heart failure (HF). We recently reported that glutamine-dependent anaplerosis, termed glutaminolysis, was activated by H2O2 stimulation in rat cardiomyocytes, which seemed to be an adaptive response by which cardiomyocytes survive acute stress. However, the molecular mechanisms and fundamental roles of glutaminolysis in the pathophysiology of the failing heart are still unknown. Here, we treated wild-type mice (C57BL/6J) and rat neonatal cardiomyocytes (RNCMs) and fibroblasts (RNCFs) with angiotensin II (ANG II) to induce pathological cardiac remodeling. Glutaminase 1 (GLS1), a rate-limiting glutaminolysis enzyme, was significantly increased in ANG II-induced mouse hearts, RNCMs and RNCFs. Unexpectedly, a GLS1 inhibitor attenuated ANG II-induced left ventricular hypertrophy and fibrosis in the mice, and gene knockdown and pharmacological perturbation of GLS1 suppressed hypertrophy and the proliferation of RNCMs and RNCFs, respectively. Using mass spectrometry (MS)-based stable isotope tracing with 13C-labeled glutamine, we observed glutamine metabolic flux in ANG II-treated RNCMs and RNCFs. The incorporation of 13C atoms into tricarboxylic acid (TCA) cycle intermediates and their derivatives was markedly enhanced in both cell types, indicating the activation of glutaminolysis in hypertrophied hearts. Notably, GLS1 inhibition reduced the production of glutamine-derived aspartate and citrate, which are required for the biosynthesis of nucleic acids and lipids, possibly contributing to the suppression of cardiac hypertrophy and fibrosis. The findings of the present study reveal that GLS1-mediated upregulation of glutaminolysis leads to maladaptive cardiac remodeling. Inhibition of this anaplerotic pathway could be a novel therapeutic approach for HF.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that increased GLS1 expression and subsequent activation of glutaminolysis are associated with exacerbation of cardiac hypertrophy and fibrosis. Inhibiting GLS1 antagonized the adverse cardiac remodeling in vitro and in vivo, partly due to reduction of glutamine-derived metabolites, which are necessary for cellular growth and proliferation. Increased glutamine utilization for anabolic reactions in cardiac cells may be related to the pathogenesis and development of HF.


Asunto(s)
Glutaminasa , Remodelación Ventricular , Animales , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/metabolismo , Peróxido de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Ratas
5.
Brain Behav Immun ; 99: 231-245, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678461

RESUMEN

Glutaminase 1 (GLS1) has recently been reported to be expressed in microglia and plays a crucial role in neuroinflamation. Significantly increased level of GLS1 mRNA expression together with neuroinflammation pathway were observed in postmortem prefrontal cortex from depressed patients. To find out the function of microglial GLS1 in depression and neuroinflammation, we generated transgenic mice (GLS1 cKO), postnatally losing GLS1 in microglia, to detect changes in the lipopolysaccharide (LPS)-induced depression model. LPS-induced anxiety/depression-like behavior was attenuated in GLS1 cKO mice, paralleled by a significant reduction in pro-inflammatory cytokines and an abnormal microglia morphological phenotype in the prefrontal cortex. Reduced neuroinflammation by GLS1 deficient microglia was a result of less reactive astrocytes, as GLS1 deficiency enhanced miR-666-3p and miR-7115-3p levels in extracellular vesicles released from microglia, thus suppressing astrocyte activation via inhibiting Serpina3n expression. Together, our data reveal a novel mechanism of GLS1 in neuroinflammation and targeting GLS1 in microglia may be a novel strategy to alleviate neuroinflammation-related depression and other disease.


Asunto(s)
Glutaminasa , Microglía , Animales , Depresión , Glutaminasa/genética , Glutaminasa/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neuroinflamatorias
6.
Bioorg Med Chem Lett ; 75: 128956, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36038117

RESUMEN

Glutamine-addicted cancer metabolism is recently recognized as novel cancer target especially for KRAS and KEAP1 co-occurring mutations. Selective glutaminase1 (GLS1) inhibition was reported using BPTES which has novel mode of allosteric inhibition. However, BPTES is a highly hydrophobic and symmetric molecule with very poor solubility which results in suboptimal pharmacokinetic parameters and hinders its further development. As an ongoing effort to identify more drug-like GLS1 inhibitors via systematic structure - activity relationship (SAR) analysis of BPTES analogs, we disclose our novel macrocycles for GLS1 inhibition with conclusive SAR analysis on the core, core linker, and wing linker, respectively. Selected molecules resulted in reduction in intracellular glutamate levels in LR (LDK378-resistant) cells which is consistent to cell viability result. Finally, compounds 13 selectively reduced the growth of A549 and H460 cells which have co-occurring mutations including KRAS and KEAP1.


Asunto(s)
Glutaminasa , Tiadiazoles , Animales , Glutamatos , Glutamina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Relación Estructura-Actividad , Sulfuros/química , Tiadiazoles/química
7.
Proc Natl Acad Sci U S A ; 115(10): 2478-2483, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463741

RESUMEN

Glutaminolysis is a well-known source of energy for effector T cells but its contribution to each T cell subset and the mechanisms which are responsible for the control of involved metabolic enzymes are not fully understood. We report that Th17 but not Th1, Th2, or Treg cell induction in vitro depends on glutaminolysis and the up-regulation of glutaminase 1 (Gls1), the first enzyme in the glutaminolysis pathway. Both pharmacological and siRNA-based selective inhibition of Gls1 reduced in vitro Th17 differentiation and reduced the CD3/TCR-mediated increase of the mammalian target of rapamycin complex 1 activity. Treatment of mice with a Gls1 inhibitor ameliorated experimental autoimmune encephalomyelitis. Furthermore, RAG1-deficient mice that received Gls1-shRNA-transfected 2D2 T cells had reduced experimental autoimmune encephalomyelitis scores compared with those that received control-shRNA-treated cells. Next we found that T cells deficient in inducible cAMP early repressor (ICER), a transcriptional factor known to promote Th17 differentiation, display reduced activity of oxidative phosphorylation rates in the presence of glutamine and reduced Gls1 expression, both of which could be restored by ICER overexpression. Finally, we demonstrate that ICER binds to the gls1 promoter directly and increases its activity. These findings demonstrate the importance of glutaminolysis in the generation of Th17 and the direct control of Gls1 activity by the IL-17-promoting transcription factor ICER. Pharmaceutical modulation of the glutaminolysis pathway should be considered to control Th17-mediated pathology.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico , Glutaminasa , Células Th17 , Animales , Autoinmunidad , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glutamina/metabolismo , Ratones , Ratones Transgénicos , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445210

RESUMEN

Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCßII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCßII specific inhibitor peptide ßIIV5-3-treated IR. Vehicle or ßIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCßII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 µM) to evaluate the inhibition of GLS1 on neuronal viability. PKCßII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by ßIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCßII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.


Asunto(s)
Trastornos Cerebrovasculares/enzimología , Glutaminasa/metabolismo , Hipocampo/enzimología , Mitocondrias/enzimología , Proteína Quinasa C beta/metabolismo , Daño por Reperfusión/enzimología , Animales , Trastornos Cerebrovasculares/patología , Gerbillinae , Hipocampo/patología , Mitocondrias/patología , Ratas , Ratas Wistar , Daño por Reperfusión/patología
9.
Exp Cell Res ; 381(1): 1-9, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31054856

RESUMEN

Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumor growth and glutamine metabolism. However, the role of GLS1 in hepatocellular carcinoma (HCC) progression remains to be elucidated. In this study, we reported that GLS1 expression was significantly increased in HCC tissues and correlated with serum AFP, tumor differentiation, lymphatic metastasis, TNM stage, and poorer patient outcome. We further showed that GLS1 promoted colony formation and cell proliferation of HCC cells. Furthermore, our data showed that GLS1 inhibitor compound 968 inhibited the proliferation of HCC cells in a dose-dependent manner. Importantly, we found that GLS1 overexpression increased p-AKT, p-GSK3ß and cyclinD1 expression, and had no influence on total AKT and GSK3ß protein level, indicating that GLS1 was involved in AKT/GSK3ß/CyclinD1 pathway. It is suggested that GLS1 promotes proliferation in HCC cells probably via AKT/GSK3ß/CyclinD1 pathway and may be a potential target for anti-hepatocellular carcinoma cancer.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glutaminasa/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Animales , Benzofenantridinas/farmacología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos , Femenino , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Oncogenes , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estudios Retrospectivos , Regulación hacia Arriba
10.
Proteomics ; 19(21-22): e1800451, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231915

RESUMEN

The targeting of glutamine metabolism specifically via pharmacological inhibition of glutaminase 1 (GLS1) has been translated into clinical trials as a novel therapy for several cancers. The results, though encouraging, show room for improvement in terms of tumor reduction. In this study, the glutaminase II pathway is found to be upregulated for glutamate production upon GLS1 inhibition in pancreatic tumors. Moreover, genetic suppression of glutamine transaminase K (GTK), a key enzyme of the glutaminase II pathway, leads to the complete inhibition of pancreatic tumorigenesis in vivo unveiling GTK as a new metabolic target for cancer therapy. These results suggest that current trials using GLS1 inhibition as a therapeutic approach targeting glutamine metabolism in cancer should take into account the upregulation of other metabolic pathways that can lead to glutamate production; one such pathway is the glutaminase II pathway via GTK.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glutaminasa/genética , Liasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Transaminasas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutamina/genética , Glutamina/metabolismo , Humanos , Liasas/antagonistas & inhibidores , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transaminasas/antagonistas & inhibidores
11.
Am J Respir Cell Mol Biol ; 61(4): 492-500, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30943369

RESUMEN

It has been increasingly recognized lately that aberrant cellular metabolism plays an important role in the pathogenesis of pulmonary fibrosis. In our previous systemic studies, we found that human lung myofibroblasts undergo glutaminolytic reprogramming, which is mediated by an increased expression of glutaminase (Gls) 1. We showed that augmented glutaminolysis critically regulates collagen production by promoting its stabilization in human lung myofibroblasts. Our study indicates that lung fibroblast Gls1 is a promising therapeutic target for this disease. In this investigation, we primarily focused on delineating the in vivo role of fibroblast Gls1 in mouse models of pulmonary fibrosis and determining the efficacy of Gls1 inhibition in treating this pathology. We now show that fibroblast Gls1 is upregulated in fibrotic mouse lungs. We present evidence that mice with ablation of fibroblast Gls1 are protected from bleomycin-induced lung fibrosis. We show that the Gls1 inhibitor, CB-839, is therapeutically efficacious in treating both bleomycin- and transforming growth factor-ß1-induced pulmonary fibrosis. Our study has thus established a solid rationale for advancing Gls1 inhibitors, particularly CB-839, to the next stage of testing in the treatment of this disease.


Asunto(s)
Fibroblastos/enzimología , Glutaminasa/antagonistas & inhibidores , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bencenoacetamidas/farmacología , Bleomicina/toxicidad , Línea Celular , Colágeno/biosíntesis , Inducción Enzimática , Glutaminasa/genética , Pulmón/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/enzimología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Tiadiazoles/farmacología , Factor de Crecimiento Transformador beta1/farmacología
12.
J Cell Mol Med ; 23(8): 5632-5641, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31211512

RESUMEN

Immunity imbalance and barrier damage in the intestinal mucosa are the main pathogenic factors of Crohn's disease (CD). Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) is a glutaminase 1 (Gls1) inhibitor with the dual functions of increasing glutamine levels and immune regulation. In this study, we focused on the role of BPTES in CD-like enteritis and the possible mechanisms. We found that Gls1 expression was significantly increased in CD intestinal tissue compared with control tissue. Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide treatment significantly ameliorated chronic colitis in the IL-10-/- , as manifested by decreased disease activity index, body weight change, histological inflammatory degree and inflammatory cytokine expression. Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide treatment exerted protective effects on CD that were associated with the maintenance of intestinal barrier integrity and the Th/Treg balance. Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide treatment may act in part through TCR-mediated mammalian target of rapamycin complex 1 (mTORC1) signalling activation. In conclusion, inhibition of Gls1 expression attenuated chronic colitis by maintaining intestinal barrier integrity and the Th/Treg balance, thereby ameliorating CD-like colitis.


Asunto(s)
Colitis/patología , Glutaminasa/antagonistas & inhibidores , Interleucina-10/deficiencia , Adulto , Animales , Colitis/inmunología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Femenino , Glutaminasa/metabolismo , Humanos , Interleucina-10/metabolismo , Intestinos/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Sulfuros/administración & dosificación , Sulfuros/farmacología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Tiadiazoles/administración & dosificación , Tiadiazoles/farmacología
13.
J Cell Biochem ; 119(7): 6136-6145, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633308

RESUMEN

Altered metabolism is a reemerging hallmark of tumorigenesis. Increased cell proliferation results in metabolic reprogramming to facilitate the needs of the rapidly dividing tumor cells. In addition to increased glucose uptake, tumors also take up increased levels of glutamine. Some cancers develop a reliance on glutamine, and are referred to as "glutamine addicted." These tumors over express the enzyme glutaminase which is involved in the first step of glutaminolysis. The goal of this study was to determine the effects of combined treatment of the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) with chemotherapy on drug resistant ovarian cancer cells. We found that ovarian cancer cells show different dependencies on exogenous glutamine. However, regardless of glutamine dependence status, treatment with BPTES sensitized both paclitaxel, and cisplatin resistant cancer cell lines to chemotherapy by inhibiting cell proliferation. Monotherapy with BPTES alone resulted in a significant reduction in the ability of glutamine dependent cancer cells to form colonies in a clonogenic assay. In addition, glutamine dependent, metastatic cancer cells expressed higher levels of glutaminase 1 (GLS1) isoforms, KGA and GAC, than untransformed cells. Moreover, dual targeting of both isoforms using siRNA was more effective at sensitizing the cancer cells to cisplatin than targeting either GAC or KGA alone. Our results suggest that both GLS1 isoforms are important for glutamine dependent ovarian cancer survival, hence, both GLS1 isoforms should be targeted for therapy in metastatic ovarian cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/antagonistas & inhibidores , Glutamina/metabolismo , Terapia Molecular Dirigida , Neoplasias Ováricas/tratamiento farmacológico , Sulfuros/farmacología , Tiadiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Células Tumorales Cultivadas
14.
Biochem Biophys Res Commun ; 477(3): 374-82, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27338638

RESUMEN

We found that non-small cell lung cancer (NSCLC) is remarkably sensitive to the regulation of glutamine supply by testing the metabolic dependency of 11 cancer cell lines against regulation of glycolysis, autophagy, fatty acid synthesis, and glutamine supply. Glutamine is known as a key supplement of cancer cell growth that is converted to α-ketoglutarate for anabolic biogenesis via glutamate by glutaminase 1 (GLS1). GLS1 inhibition using 10 µM of bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) showed about 50% cell growth arrest by SRB assay. By testing the synergistic effects of conventional therapeutics, BPTES combined with 5-fluorouracil (5-FU), an irreversible inhibitor of thymidylate synthase, significant effects were observed on cell growth arrest in NSCLC. We found that GLS1 inhibition using BPTES reduced metabolic intermediates including thymidine and carbamoyl phosphate. Reduction of thymidine and carbamoyl-phosphate synthesis by BPTES treatment exacerbated pyrimidine supply by combination with 5-FU, which induced cell death synergistically in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glutaminasa/antagonistas & inhibidores , Neoplasias Pulmonares/metabolismo , Timidina/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimología
15.
Tumour Biol ; 37(8): 11007-15, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26894601

RESUMEN

The PI3K/Akt/mTOR axis in ovarian cancer is frequently activated and implicated in tumorigenesis. Specific targeting of this pathway is therefore an attractive therapeutic approach for ovarian cancer. However, ovarian cancer cells are resistant to PP242, a dual inhibitor of mTORC1 and mTORC2. Interestingly, blockage of GLS1 with a selective inhibitor, CB839, or siRNA dramatically sensitized the PP242-induced cell death, as evident from increased PARP cleavage. The anti-cancer activity of CB-839 and PP242 was abrogated by the addition of the TCA cycle product α-ketoglutarate, indicating the critical function of GLS1 in ovarian cancer cell survival. Finally, glutaminolysis inhibition activated apoptosis and synergistically sensitized ovarian cancer cells to priming with the mTOR inhibitor PP242. GLS1 inhibition significantly reduced phosphorylated STAT3 expression in ovarian cancer cells. These findings show that targeting glutamine addiction via GLS1 inhibition offers a potential novel therapeutic strategy to overcome resistance to PI3K/Akt/mTOR inhibition.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Glutaminasa/metabolismo , Neoplasias Ováricas/metabolismo , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencenoacetamidas/farmacología , Western Blotting , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Humanos , Indoles/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tiadiazoles/farmacología
16.
Amino Acids ; 48(2): 337-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26427714

RESUMEN

Chronic post-surgical pain (CPSP) is a normal and significant symptom in clinical surgery, such as breast operation, biliary tract operation, cesarean operation, uterectomy and thoracic operation. Severe chronic post-surgical pain could increase post-surgical complications, including myocardial ischemia, respiratory insufficiency, pneumonia and thromboembolism. However, the underlying mechanism is still unknown. Herein, a rat CPSP model was produced via thoracotomy. After surgery, in an initial study, 5 out of 12 rats after surgery showed a significant decrease in mechanical withdrawal threshold and/or increase in the number of acetone-evoked responses, and therefore classified as the CPSP group. The remaining seven animals were classified as non-CPSP. Subsequently, open-chest operation was performed on another 30 rats and divided into CPSP and non-CPSP groups after 21-day observation. Protein expression levels in the dorsal spinal cord tissue were determined by 12.5 % SDS-PAGE. Finally, differently expressed proteins were identified by LC MS/MS and analyzed by MASCOT software, followed by Gene Ontology cluster analysis using PANTHER software. Compared with the non-CPSP group, 24 proteins were only expressed in the CPSP group and another 23 proteins expressed differentially between CPSP and non-CPSP group. Western blot further confirmed that the expression of glutaminase 1 (GLS1) was significantly higher in the CPSP than in the non-CPSP group. This study provided a new strategy to identify the spinal proteins, which may contribute to the development of chronic pain using differential proteomics, and suggested that GLS1 may serve as a potential biomarker for CPSP.


Asunto(s)
Dolor Crónico/patología , Glutaminasa/metabolismo , Hiperalgesia/patología , Médula Espinal/patología , Toracotomía/efectos adversos , Animales , Biomarcadores/metabolismo , Dolor Crónico/diagnóstico , Frío , Electroforesis en Gel de Poliacrilamida , Masculino , Modelos Animales , Proteómica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Toracotomía/métodos
17.
Mol Neurobiol ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39467985

RESUMEN

Chronic post-thoracotomy pain (CPTP) is a major clinical problem that affects up to 35-55% of patients undergoing thoracic incisions. Evidence suggests that multiple cellular signaling pathways and neuro-inflammatory mediators may play an essential role in the pathogenesis of CPTP. In this comprehensive review, we present the current evidence on the cellular signaling pathways and inflammatory changes associated with the initiation and maintenance of CPTP, focusing on the potential application of these findings in the clinical setting. An electronic search of Medline, EMBASE, Cochrane, Google Scholar, and ClinicalTrials.gov was performed, and 3652 abstracts were identified. After an initial abstract screening, 131 studies underwent a full-text review, and nine papers were eventually included in this review. Studies were included if they assessed the cellular signaling pathways or inflammatory processes associated with the induction and/or maintenance of CPTP. All the identified studies were pre-clinical studies conducted on animal models. Our search identified seven cellular pathways (NK-1 receptor (NK-1), Glutaminase 1, Toll-like receptor 4 (TLR4), Resolvins, Ror-2, Sonic hedgehog signaling (Shh), and Wnt5a/Wnts) and six cytokines (IL-1ß, IL-6, IL-8, IL-10, IFN-γ, and TNF-α) that were investigated in the context of CPTP. Multiple cellular signaling pathways and inflammatory cytokines may play an important role in the neuroinflammatory changes associated with the induction and maintenance of chronic post-thoracotomy pain in animal models. However, the clinical impact and therapeutic utility of these neuroinflammatory changes in routine clinical practice have yet to be demonstrated.

18.
Eur J Med Chem ; 246: 115014, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525694

RESUMEN

Tumor cells often exhibit metabolic reprogramming to maintain their rapid growth and proliferation. Glutaminase 1 (GLS1) has been viewed as a promising target in the glutamine metabolism pathway for the treatment of malignant tumors. Using structure-based drug design approaches, a novel series of GLS1 allosteric inhibitors were designed and synthesized. Compound 41a (LWG-301) with an alkane chain "tail" group had potent biochemical and cellular GLS1 activity, and improved metabolic stability. LWG-301 exhibited moderate antitumor effects in HCT116 xenograft model, with TGI of 38.9% in vivo. Mechanistically, LWG-301 could significantly block glutamine metabolism, resulting in changes in the corresponding amino acid levels in cells, induce a concentration-dependent increase in intracellular ROS levels, and induce apoptosis. Taken together, this paper provides more structural references and new design strategy for the development of GLS1 allosteric inhibitors.


Asunto(s)
Glutaminasa , Glutamina , Humanos , Proliferación Celular , Glutamina/metabolismo , Xenoinjertos
19.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37513875

RESUMEN

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a selective inhibitor of glutaminase-1 (GLS1), consequently inhibiting glutaminolysis. BPTES is known for its potent antitumor activity and plays a significant role in senescent cell removal. In this study, we synthesized [11C-carbonyl]BPTES ([11C]BPTES) as a positron emission tomography (PET) probe for the first time and assessed its biodistribution in mice using PET. [11C]BPTES was synthesized by the reaction of an amine precursor () with [11C-carbonyl]phenylacetyl acid anhydride ([11C]2), which was prepared from [11C]CO2 and benzyl magnesium chloride, followed by in situ treatment with isobutyl chloroformate. The decay-corrected isolated radiochemical yield of [11C]BPTES was 9.5% (based on [11C]CO2) during a synthesis time of 40 min. A PET study with [11C]BPTES showed high uptake levels of radioactivity in the liver, kidney, and small intestine of mice.

20.
Matrix Biol ; 122: 33-45, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541633

RESUMEN

Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected. Moreover, in vivo and in vitro models of intestinal fibrosis, SIRT4 expression was significantly decreased in a TGF-ß dependent manner, and its decrease was negatively associated with disease severity. SIRT4 impeded ECM deposition by inhibiting glutaminolysis, but not glycolysis, and α-ketoglutarate (α-KG) was identified as the key metabolite. Specifically, SIRT4 hinders SIRT5's stabilizing interaction with glutaminase 1 (GLS1), thereby facilitating the degradation of GLS1. KDM6, rather than KDM4, is a potential mediator for α-KG-induced transcription of ECM components, and SIRT4 enhances the enrichment of H3K27me3 on their promotors and enhancers. These findings indicate that the activation of TGF-ß signals decreases the expression of SIRT4 in intestinal fibrosis, and SIRT4 can facilitate GLS1 degradation, thereby resisting glutaminolysis and alleviating intestinal fibrosis, providing a novel therapeutic target for intestinal fibrosis.


Asunto(s)
Glutaminasa , Sirtuinas , Humanos , Fibroblastos/metabolismo , Fibrosis , Glutaminasa/genética , Glutaminasa/metabolismo , Intestinos , Proteínas Mitocondriales , Sirtuinas/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda