Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Appl Microbiol Biotechnol ; 104(12): 5477-5492, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32307572

RESUMEN

The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.


Asunto(s)
Cianuros/metabolismo , Glutarredoxinas/metabolismo , Estrés Oxidativo , Sulfurtransferasas/metabolismo , Xylella/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutarredoxinas/genética , Modelos Moleculares , Filogenia , Conformación Proteica , Sulfurtransferasas/genética , Tiosulfato Azufretransferasa/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1867(12): 130489, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827204

RESUMEN

BACKGROUND: Entamoeba histolytica, an intestinal parasitic protozoan that usually lives and multiplies within the human gut, is the causative agent of amoebiasis. To date, de novo glutathione biosynthesis and its associated enzymes have not been identified in the parasite. Cysteine has been proposed to be the main intracellular thiol. METHODS: Using bioinformatics tools to search for glutaredoxin homologs in the E. histolytica genome database, we identified a coding sequence for a putative Grx-like small protein (EhGLSP) in the E. histolytica HM-1:IMSS genome. We produced the recombinant protein and performed its biochemical characterization. RESULTS: Through in vitro experiments, we observed that recombinant EhGLSP could bind GSH and L-Cys as ligands. However, the protein exhibited very low GSH-dependent disulfide reductase activity. Interestingly, via UV-Vis spectroscopy and chemical analysis, we detected that recombinant EhGLSP (freshly purified from Escherichia coli cells by IMAC) was isolated together with a redox-labile [FeS] bio-inorganic complex, suggesting that this protein could have some function linked to the metabolism of this cofactor. Western blotting showed that EhGLSP protein levels were modulated in E. histolytica cells exposed to exogenous oxidative species and metronidazole, suggesting that this protein cooperates with the antioxidant mechanisms of this parasite. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our findings support the existence of a new metabolic actor in this pathogen. To the best of our knowledge, this is the first report on this protein class in E. histolytica.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Humanos , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Parásitos/metabolismo , Anaerobiosis , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Protozoarias/metabolismo
3.
Plant Physiol Biochem ; 159: 135-147, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33360237

RESUMEN

Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Proteínas de Plantas , Estrés Fisiológico , Tamaricaceae , Arabidopsis/genética , China , Sequías , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Tamaricaceae/genética , Tamaricaceae/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda