RESUMEN
Before zygotic genome activation (ZGA), the quiescent genome undergoes reprogramming to transition into the transcriptionally active state. However, the mechanisms underlying euchromatin establishment during early embryogenesis remain poorly understood. Here, we show that histone H4 lysine 16 acetylation (H4K16ac) is maintained from oocytes to fertilized embryos in Drosophila and mammals. H4K16ac forms large domains that control nucleosome accessibility of promoters prior to ZGA in flies. Maternal depletion of MOF acetyltransferase leading to H4K16ac loss causes aberrant RNA Pol II recruitment, compromises the 3D organization of the active genomic compartments during ZGA, and causes downregulation of post-zygotically expressed genes. Germline depletion of histone deacetylases revealed that other acetyl marks cannot compensate for H4K16ac loss in the oocyte. Moreover, zygotic re-expression of MOF was neither able to restore embryonic viability nor onset of X chromosome dosage compensation. Thus, maternal H4K16ac provides an instructive function to the offspring, priming future gene activation.
Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Activación Transcripcional/genética , Acetilación , Animales , Secuencia de Bases , Segregación Cromosómica/genética , Secuencia Conservada , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Evolución Molecular , Femenino , Genoma , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Masculino , Mamíferos/genética , Ratones , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Oocitos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Cromosoma X/metabolismo , Cigoto/metabolismoRESUMEN
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Asunto(s)
Compensación de Dosificación (Genética) , Cromosoma X/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigénesis Genética , Femenino , Genes Ligados a X , Código de Histonas/genética , Humanos , Masculino , Modelos Genéticos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosoma X/metabolismoRESUMEN
Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.
Asunto(s)
Histona Acetiltransferasas/genética , Homeostasis/genética , Transcripción Genética/genética , Acetilación , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Células THP-1RESUMEN
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Asunto(s)
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferasas , Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Ecdisterona/metabolismo , Regiones Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismoRESUMEN
The X chromosome provides an ideal model system to study the contribution of RNA-protein interactions in epigenetic regulation. In male flies, roX long noncoding RNAs (lncRNAs) harbor several redundant domains to interact with the ubiquitin ligase male-specific lethal 2 (MSL2) and the RNA helicase Maleless (MLE) for X-chromosomal regulation. However, how these interactions provide the mechanics of spreading remains unknown. By using the uvCLAP (UV cross-linking and affinity purification) methodology, which provides unprecedented information about RNA secondary structures in vivo, we identified the minimal functional unit of roX2 RNA. By using wild-type and various MLE mutant derivatives, including a catalytically inactive MLE derivative, MLEGET, we show that the minimal roX RNA contains two mutually exclusive stem-loops that exist in a peculiar structural arrangement: When one stem-loop is unwound by MLE, an alternate structure can form, likely trapping MLE in this perpetually structured region. We show that this functional unit is necessary for dosage compensation, as mutations that disrupt this formation lead to male lethality. Thus, we propose that roX2 lncRNA contains an MLE-dependent affinity switch to enable reversible interactions of the MSL complex to allow dosage compensation of the X chromosome.
Asunto(s)
Drosophila melanogaster/genética , Epigénesis Genética/genética , Secuencias Invertidas Repetidas/genética , ARN Largo no Codificante/genética , Cromosoma X/genética , Animales , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética)/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas Genéticas , Masculino , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , ARN Largo no Codificante/química , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.
Asunto(s)
Arabidopsis , Histonas , Histonas/metabolismo , Roturas del ADN de Doble Cadena , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , ADN , Reparación del ADNRESUMEN
Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.
Asunto(s)
Eucromatina , Histonas , Mutación , Nucleosomas , Humanos , Nucleosomas/metabolismo , Nucleosomas/química , Histonas/metabolismo , Histonas/química , Células HeLa , Eucromatina/metabolismo , Eucromatina/química , AcetilaciónRESUMEN
BACKGROUND: Results of previous studies about the prognostic roles of histone H4 lysine 16 acetylation (H4K16ac) and histone H4 lysine 20 trimethylation (H4K20me3) in breast cancer were inconsistent. Cellular experiments revealed the interplays between H4K16ac and H4K20me3, but no population study explored the interaction between them on the prognosis. METHODS: H4K16ac and H4K20me3 levels in tumors were evaluated by immunohistochemistry for 958 breast cancer patients. Hazard ratios for overall survival (OS) and progression-free survival (PFS) were estimated using Cox regression models. Interaction was assessed on multiplicative scale. Concordance index (C-index) was calculated to verify the predictive performance. RESULTS: The prognostic roles of the low level of H4K16ac or H4K20me3 were significant only in patients with the low level of another marker and their interactions were significant. Moreover, compared with joint high levels of both them, only the combined low levels of both them was associated with a poor prognosis but not the low level of single one. The C-index of the clinicopathological model combined the joint expression of H4K16ac and H4K20me3 [0.739 for OS; 0.672 for PFS] was significantly larger than that of the single clinicopathological model [0.699 for OS, P < 0.001; 0.642 for PFS, P = 0.003] or the model combined with the single H4K16ac [0.712 for OS, P < 0.001; 0.646 for PFS, P < 0.001] or H4K20me3 [0.724 for OS, P = 0.031; 0.662 for PFS, P = 0.006]. CONCLUSIONS: There was an interaction between H4K16ac and H4K20me3 on the prognosis of breast cancer and the combination of them was a superior prognostic marker compared to the single one.
Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/genética , Histonas/metabolismo , Neoplasias de la Mama/metabolismo , Lisina/metabolismo , Metilación , PronósticoRESUMEN
The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.
Asunto(s)
Envejecimiento , Histona Acetiltransferasas , Neoplasias , Sirtuinas , Humanos , Acetilación , Cromatina , ADN/metabolismo , Daño del ADN , Reparación del ADN , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Neoplasias/genética , Sirtuinas/genética , Sirtuinas/metabolismoRESUMEN
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/fisiología , Chaperonas de Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular , Senescencia Celular/genética , Cromatina/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Papiloma/patología , Neoplasias Cutáneas/patología , Tamoxifeno/farmacología , Factores de Transcripción/genéticaRESUMEN
Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.
Asunto(s)
Botrytis/fisiología , Histonas , Estrés Oxidativo , Acetilación , Botrytis/genética , Botrytis/patogenicidad , Catalasa/genética , Genes Fúngicos , Glicósido Hidrolasas/genética , Histonas/genética , Enfermedades de las Plantas/microbiología , VirulenciaRESUMEN
Proper oocyte development is crucial for female fertility and requires timely and accurate control of gene expression. K (lysine) acetyltransferase 8 (KAT8), an important component of the X chromosome dosage compensation system in Drosophila, regulates gene activity by acetylating histone H4 preferentially at lysine 16. To explore the function of KAT8 during mouse oocyte development, we crossed Kat8flox/flox mice with Gdf9-Cre mice to specifically delete Kat8 in oocytes. Oocyte Kat8 deletion resulted in female infertility, with follicle development failure in the secondary and preantral follicle stages. RNA-seq analysis revealed that Kat8 deficiency in oocytes results in significant downregulation of antioxidant genes, with a consequent increase in reactive oxygen species. Intraperitoneal injection of the antioxidant N-acetylcysteine rescued defective follicle and oocyte development resulting from Kat8 deficiency. Chromatin immunoprecipitation assays indicated that KAT8 regulates antioxidant gene expression by direct binding to promoter regions. Taken together, our findings demonstrate that KAT8 is essential for female fertility by regulating antioxidant gene expression and identify KAT8 as the first histone acetyltransferase with an essential function in oogenesis.
Asunto(s)
Histona Acetiltransferasas/metabolismo , Oogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Femenino , Fertilidad/genética , Fertilidad/fisiología , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Oocitos/metabolismo , Oogénesis/genética , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , EmbarazoRESUMEN
BACKGROUND & AIMS: Vascular invasion is a major prognostic factor in hepatocellular carcinoma (HCC). We previously identified histone H4 acetylated at lysine 16 (H4K16ac), a histone modification involved in transcription activation, as a biomarker of microvascular invasion (mVI) in HCC. This study aimed to investigate the role of hMOF, the histone acetyltransferase responsible for H4K16 acetylation, in the process of vascular invasion in HCC. METHODS: hMOF expression was assessed by RT-qPCR and immunohistochemistry in a retrospective series of HCC surgical samples, and correlated with the presence of mVI. The functional role of hMOF in HCC vascular invasion was investigated in vitro in HCC cell lines using siRNA, transcriptomic analysis and transwell invasion assay, and in vivo using a Zebrafish embryo xenograft model. RESULTS: We found that hMOF was significantly upregulated at the protein level in HCC with mVI, compared with HCC without mVI (P < .01). Transcriptomic analysis showed that hMOF downregulation in HCC cell line lead to significant downregulation of key genes and pathways involved in vascular invasion. These results were confirmed by transwell invasion assay, where hMOF downregulation significantly reduced HCC cells invasion. Finally, hMOF downregulation significantly reduced tumour cell intravasation and metastasis in vivo. CONCLUSIONS: Altogether, these results underpin a critical role for hMOF in vascular invasion in HCC, via transcription activation of key genes involved in this process. These data confirm the major role of epigenetic alterations in HCC progression, and pave the way for future therapies targeting hMOF in HCC.
Asunto(s)
Carcinoma Hepatocelular , Histona Acetiltransferasas/genética , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Estudios Retrospectivos , Pez CebraRESUMEN
BACKGROUND & AIMS: Microvascular invasion (mVI) is a major prognostic factor in hepatocellular carcinoma (HCC) that cannot be detected before surgery. Predictive biomarkers of mVI are thus urgently needed. We have developed an original approach of virtual biopsy to assess the performance of an immunohistochemical panel comprising three biomarkers of mVI (H4K16ac, H4K20me2, PIVKA-II) for the prediction of mVI in HCC core needle biopsies (CNB). METHODS: A test set of HCC surgical specimens (n = 64) and an independent validation set of HCC CNB (n = 42) were retrospectively constituted. Immunostainings were first quantified in the test set on the whole tissue section, to determine optimal cut-off values for each marker. From the digitised image of the whole section, three virtual biopsies were provided. Immunostainings and accuracy of the panel for the prediction of mVI were further assessed in virtual biopsies and in the validation set of CNB. RESULTS: In virtual biopsies, PIVKA-II/H4K16ac had the best performance for prediction of mVI, with sensitivity, specificity, predictive positive value (PPV), and predictive negative value (PNV) of 30%, 97%, 91%, 56%, respectively. In CNB, PIVKA-II/H4K20me2 showed the best accuracy for prediction of mVI, with sensitivity, specificity, PPV, and NPV of 43%, 95%, 90%, and 62%, respectively. The two panels were independent predictive factors of mVI (PIVKA-II/H4K16ac, P = .037; PIVKA-II/H4K20me2, P = .026). CONCLUSION: This study shows that a panel of two markers is able to predict mVI in HCC CNB, and pave the way for the future development of prognostic biomarkers in HCC that could guide the therapeutic strategy.
Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Anciano , Biomarcadores/análisis , Biopsia/métodos , Femenino , Francia , Histonas/análisis , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Proyectos Piloto , Precursores de Proteínas/análisis , Protrombina/análisis , Curva ROC , Estudios Retrospectivos , Coloración y Etiquetado/métodosRESUMEN
WD repeat-containing protein 5 (WDR5), a member of conserved WD40 protein family, is an essential component of the mixed lineage leukemia (MLL) complexes, which are crucial for numerous key biological processes including methylation of histone H3 lysine 4 (H3K4), self-renewal of embryonic stem cells, and formation of induced pluripotent stem cells. The expression pattern and functional role of WDR5 during porcine preimplantation embryonic development, however, remain unknown. Our results showed that the transcripts and protein of WDR5 exhibited stage-specific expression pattern in porcine early embryos. Moreover, blastocyst rate and total cell number per blastocyst were reduced by RNAi-mediated silencing of WDR5 or pharmacological inhibition of WDR5. Knockdown of WDR5 also disturbed the expression of several pluripotency genes. Interestingly, tri-methylation of H3K4 (H3K4me3) level was dramatically increased by WDR5 depletion. Further analysis revealed that loss of MLL3 phenocopied WDR5 knockdown, triggering increased H3K4me3 level. Simultaneously, WDR5 depletion significantly decreased the levels of histone H4 lysine 16 acetylation (H4K16ac) and its writer males absent on the first (MOF). Last but not least, WDR5 knockdown induced DNA damage and DNA repair defects during porcine preimplantation development. Taken together, results of described studies establish that WDR5 plays a significant role in porcine preimplantation embryos probably through regulating key epigenetic modifications and genome integrity.
Asunto(s)
Blastocisto/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Porcinos/embriología , Animales , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , TranscriptomaRESUMEN
Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.
Asunto(s)
Apoptosis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Discos Imaginales/anomalías , Proteínas Inhibidoras de la Apoptosis/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Nucleares/metabolismo , Acetilación , Animales , Caspasas/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Histona Acetiltransferasas/genética , Histonas/metabolismo , Discos Imaginales/citología , Larva , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Transcripción Genética , Regulación hacia ArribaRESUMEN
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Asunto(s)
Carcinogénesis/metabolismo , Histona Acetiltransferasas/metabolismo , Acetilación , Animales , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Procesamiento Proteico-PostraduccionalRESUMEN
The human methyltransferase MLL4 plays a critical role in embryogenesis and development, and aberrant activity of MLL4 is linked to neurodegenerative and developmental disorders and cancer. MLL4 contains the catalytic SET domain that catalyzes mono methylation of lysine 4 of histone H3 (H3K4me1) and seven plant homeodomain (PHD) fingers, six of which have not been structurally and functionally characterized. Here, we demonstrate that the triple PHD finger cassette of MLL4, harboring its fourth, fifth and sixth PHD fingers (MLL4PHD456) forms an integrated module, maintains the binding selectivity of the PHD6 finger toward acetylated lysine 16 of histone H4 (H4K16ac), and is capable of binding to DNA. Our findings highlight functional correlation between H4K16ac and H3K4me1, two major histone modifications that are recognized and written, respectively, by MLL4.
Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Dedos de Zinc PHD , Humanos , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Unión ProteicaRESUMEN
BACKGROUND: As the leading cause of end-stage liver disease, nonalcoholic fatty liver disease (NAFLD) is mainly induced by lipid dyshomeostasis. The translation of endogenous circular RNAs (circRNAs) is closely related to the progression of various diseases, but the involvement of circRNAs in NAFLD has not been determined. METHODS: Combined high-throughput circRNA profiles were used to identify circRNAs with translational potential. The underlying molecular mechanisms were investigated by RNA sequencing, pull-down/MS and site-specific mutagenesis. RESULTS: In this study, we focused on circ-SLC9A6, an abnormally highly expressed circRNA in human and mouse liver tissue during NAFLD development that exacerbates metabolic dyshomeostasis in hepatocytes by encoding a novel peptide called SLC9A6-126aa in vivo and in vitro. YTHDF2-mediated degradation of m6A-modified circ-SLC9A6 was found to be essential for the regulation of SLC9A6-126aa expression. We further found that the phosphorylation of SLC9A6-126aa by AKT was crucial for its cytoplasmic localization and the maintenance of physiological homeostasis, whereas high-fat stress induced substantial translocation of unphosphorylated SLC9A6-126aa to the nucleus, resulting in a vicious cycle of lipid metabolic dysfunction. Nuclear SLC9A6-126aa promotes transcriptional activation of the target gene CD36 and enhances its occupancy of the CD36 promoter locus by regulating MOF-mediated histone H4K16 acetylation. Hepatic CD36 depletion significantly ameliorated hyperactivated MAPK signalling and lipid disturbance in SLC9A6-126aa transgenic mice. Clinically, increasing levels of SLC9A6-126aa were observed during NAFLD progression and were found to be positively correlated with the CD36 and MAPK cascades. CONCLUSION: This study revealed the role of circ-SLC9A6-derived SLC9A6-126aa in the epigenetic modification-mediated regulation of lipid metabolism. Our findings may provide promising therapeutic targets for NAFLD and new insights into the pathological mechanisms of metabolic diseases. HIGHLIGHTS: Under normal circumstances, driven by m6A modification, YTHDF2 directly recognizes and degrades circ-SLC9A6, thereby inhibiting the translation of SLC9A6-126aa. Additionally, AKT1 phosphorylates and inhibits the nuclear translocation of SLC9A6-126aa. In NAFLD, lipid overload leads to YTHDF2 and AKT1 deficiency, ultimately increasing the expression and nuclear import of SLC9A6-126aa. Nuclear SLC9A6-126aa binds directly to the CD36 promoter and initiates CD36 transcription, which induces lipid dyshomeostasis.
Asunto(s)
Antígenos CD36 , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Antígenos CD36/genética , Antígenos CD36/metabolismo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Péptidos/metabolismo , Péptidos/genética , ARN Circular/genética , ARN Circular/metabolismoRESUMEN
Autophagic/lysosomal dysfunction was a critical pathogenesis of neuronal death after an ischemic stroke, but what drove the impairment of autophagic flux remained elusive. Studies indicated that histone H4 lysine 16 acetylation (H4K16ac) drastically modulated the autophagic/lysosomal signaling pathway. Herein, we investigated whether the autophagic/lysosomal dysfunction in neurons could be restored by altering H4K16ac levels after cerebral ischemia. The rat model of ischemic stroke and the cell ischemia model in HT22 neurons were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. The result showed that H4K16ac could be effectively reduced by intracerebroventricular administration with MG149 (a H4K16ac inhibitor) after an ischemic stroke. Moreover, attenuated H4K16ac greatly alleviated the autophagic/lysosomal dysfunction in penumbral neurons, as indicated by decreased autophagic substrates of LC3-II, insoluble SQSTM1, and ubiquitinated proteins, accompanied by increased lysosomal cathepsin D. Conversely, treatment with trichostatin A (TSA, a H4K16ac facilitator) aggravated the impairment of autophagic flux. This regulative machinery of H4K16ac on the autophagic/lysosomal signaling pathway was also manifested in the OGD model of HT22 neurons. Furthermore, H4K16ac attenuation-ameliorated autophagic flux significantly alleviated stroke brain injury, as reflected by decreased infarct size, neuron loss, and neurological deficits. Similarly, the H4K16ac inhibition-mitigated autophagic/lysosomal dysfunction markedly promoted neuron survival and cell viability in OGD HT22 neurons. However, H4K16ac downregulation-ameliorated autophagic flux in neurons and thereby induced neuroprotection could be greatly counteracted by the lysosomal inhibitor bafilomycin A1 (Baf-A1). Our data indicate that cerebral ischemia-elevated H4K16ac creates the autophagic/lysosomal dysfunction due to lysosomal inefficiency, suggesting that H4K16ac attenuation benefits poststroke neuroprotection by resuming lysosomal functions in neurons.