Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Emerg Infect Dis ; 28(7): 1509-1512, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35731193

RESUMEN

Several zoonotic influenza A viruses detected in humans contain genes derived from avian H9N2 subtypes. We uncovered a Eurasian avian-like H1N1 swine influenza virus with polymerase basic 1 and matrix gene segments derived from the H9N2 subtype, suggesting that H9N2 viruses are infecting pigs and reassorting with swine influenza viruses in China.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Aves , China/epidemiología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/epidemiología
2.
Virol J ; 19(1): 113, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764970

RESUMEN

BACKGROUND: The H9N2 virus can infect not only birds but also humans. The pathogenicity of H9N2 virus infection is determined by an excessive immune response in the lung. All-trans retinoic acid (ATRA), the active metabolite of vitamin A, plays an important regulatory role and has been widely used in the clinical practice. This study was aimed to investigate whether ATRA could regulate the immune response to H9N2 virus infection in the lungs of mice, thereby reducing the pathogenicity of the H9N2 virus in mice. METHODS: Mice were infected intranasally with H9N2 virus, and injected intraperitoneally with 0.2 mL of ATRA at low (1 mg/kg), medium (5 or 10 mg/kg), or high therapeutic dose (20 mg/kg), and toxic dose (40, 60, or 80 mg/kg), once per day for 10 days. Clinical signs, survival rates, and lung gross pathology were compared between the ATRA-treated H9N2-infected group, the ATRA group, and the H9N2-infected group, to investigate the effect of different doses of ATRA on the pathogenicity of H9N2 virus. Additionally, the viral load and cytokine concentration of lungs were measured at 3, 5, 7, and 9 days after infection, to investigate the potential mechanism of ATRA in affecting the pathogenicity of the H9N2 virus. Expression levels of cellular retinoic acid-binding protein 1 (CRABP1), cellular retinoic acid-binding protein 2 (CRABP2), and Retinoic acid-inducible gene-I (RIG-I) were detected using Western blotting. RESULTS: The ATRA-treated H9N2-infected mice showed more severe clinical signs compared with the H9N2-infected group. The medium and high therapeutic doses of ATRA reduced the survival rates, aggravated lung tissue damage, decreased the expression of interferon beta (IFN-ß), and increased the concentrations of interleukin-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and C-C motif chemokine ligand 2 (CCL2) in the lungs of the H9N2-infected mice. At the same time, the expression patterns of CRABP1, CRABP2, and RIG-I were changed in mice infected by H9N2 and treated with different concentrations of ATRA. CONCLUSIONS: Our findings suggest that the therapeutic dose of ATRA can increase the pathogenicity of the H9N2 virus. Therefore, the consequences of those infected by influenza virus would be more severe after ATRA treatment.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Receptores de Ácido Retinoico , Tretinoina , Virulencia
3.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33722928

RESUMEN

H9N2 avian influenza virus has been continuously circulating among poultry and can infect mammals, indicating that this virus is a potential pandemic strain. During influenza pandemics, secondary bacterial (particularly pneumococcal) pneumonia usually contributes to excessive mortality. In the present study, we observed the dynamic effect of H9N2 virus infection on host defense against secondary pneumococcal infection in mice. BALB/c mice were intranasally inoculated with 1.2 × 105 PFU of H9N2 virus followed by 1 × 106 CFU of Streptococcus pneumoniae at 7, 14, or 28 days post-H9N2 infection (dpi). The bacterial load, histopathology, body weight, and survival were assessed after pneumococcal infection. Our results showed that H9N2 virus infection had no significant impact on host resistance to secondary pneumococcal infection at 7 dpi. However, H9N2 virus infection increased pulmonary pneumococcal clearance and reduced pneumococcal pneumonia-induced morbidity after secondary pneumococcal infection at 14 or 28 dpi, as reflected by significantly decreased bacterial loads, markedly alleviated pulmonary histopathological changes, and significantly reduced weight loss in mice infected with H9N2 virus followed by S. pneumoniae compared with mice infected only with S. pneumoniae Further, the significantly decreased bacterial loads were observed when mice were previously infected with a high dose (1.2 × 106 PFU) of H9N2 virus. Also, similar to the results obtained in BALB/c mice, improvement in pulmonary pneumococcal clearance was observed in C57BL/6 mice. Overall, our results showed that pulmonary pneumococcal clearance is improved after resolution of H9N2 virus infection in mice.


Asunto(s)
Coinfección , Subtipo H9N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Streptococcus pneumoniae/inmunología , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Ratones , Factores de Tiempo
4.
Virus Genes ; 57(6): 521-528, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34519961

RESUMEN

H9N2 subtype avian influenza virus has dramatically evolved and undergone extensive reassortment since its emergence in early 1990s in China. The genotype S (G57), emerging in 2007 with the substitution of F98-like PB2 and M gene by G1-like ones, has become the overwhelming predominant genotype for the past 11 years since 2010. Here, we found that virus with G1-like PB2 were more efficient in protein expression and in infectious virus production than that with F98-like PB2 gene. By coinfected MDCK cells with the reassortant virus, more survival opportunity for viruses with G1-like PB2 than that of F/98-like was observed. Besides, in animal experiments, we found that the G1-like PB2 increases virus infectivity, replication, and virus shedding of H9N2 in chickens. Our results suggested that the substitution of G1-like PB2 play important role in promoting the fitness of genotype S H9N2 virus in China.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Virus Reordenados/genética , Proteínas Virales/genética , Animales , Pollos , Subtipo H9N2 del Virus de la Influenza A/genética , Replicación Viral
5.
Virol J ; 17(1): 92, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631356

RESUMEN

BACKGROUND: The PD-1/PD-L1 pathway is an inhibitory signaling pathway that maintains the balance between the immune response and immunotolerance, and its overactivation in cancer and viral infections inhibits T cell function. The target cells of various viruses, microvascular endothelial cells (MECs) have been shown to be key regulatory points in immune regulation and virion diffusion in vivo during infection with multiple influenza virus subtypes. Furthermore, avian influenza virus (AIV) infection can induce immunosuppression by causing imbalances in immune responses and immune organ damage. Thus, the aim of this study was to investigate whether the H9N2 virus inhibited the immune function of T cells that migrated across MECs by upregulating PD-L1 expression on MECs. METHODS: The susceptibility of rat pulmonary microvascular endothelial cells (RPMECs) to the H9N2 virus was evaluated by a plaque-forming assay and immunofluorescence staining. Then, we quantified the mRNA and protein levels of PD-L1 in RPMECs induced by H9N2 virus infection using quantitative real-time PCR and flow cytometry. The interaction between the activated T cells and RPMECs infected with the H9N2 virus was revealed using a coculture system. The effect of endothelial-derived PD-L1 on T cell function was investigated by using ELISA and flow cytometry with or without a PD-L1-specific antibody. RESULTS: Surface staining and the plaque-forming assay showed that the H9N2 virus infected and replicated in RPMECs. Both the PD-L1 mRNA level and PD-L1 protein level were upregulated in RPMECs infected with the H9N2 virus. H9N2 virus-induced PD-L1 expression significantly reduced the secretions of IL-2, IFN-γ and granzyme B and perforin expression in T cells. The above data were significantly increased after treatment with an anti-PD-L1 antibody, confirming the above mentioned findings. In addition, the induction of PD-L1 expression decreased the proliferative capacity of the cocultured T cells but did not affect the apoptosis rate of T cells. CONCLUSIONS: Taken together, the results suggest that the H9N2 virus is able to inhibit the T cell immune response by upregulating PD-L1 expression in pulmonary microvascular endothelial cells.


Asunto(s)
Antígeno B7-H1/inmunología , Células Endoteliales/inmunología , Células Endoteliales/virología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Linfocitos T/inmunología , Animales , Antígeno B7-H1/genética , Células Cultivadas , Interferón gamma/inmunología , Pulmón/citología , Microvasos/citología , Ratas , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/inmunología , Regulación hacia Arriba , Replicación Viral
6.
Avian Pathol ; 49(5): 486-495, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483989

RESUMEN

H9N2, a low pathogenic avian influenza virus, causes significant economic losses in the poultry industry worldwide. Herein, we describe the construction of an attenuated Salmonella Gallinarum (SG) strain for expression and delivery of H9N2 haemagglutinin (HA) 1 (SG-HA1), HA2 (SG-HA2) and/or the conserved matrix protein 2 ectodomain (SG-M2e). We demonstrated that recombinant SG strains expressing HA1, HA2 and M2e antigens were immunogenic and safe in a chicken model. Chickens (n = 8) were vaccinated once orally with SG alone, SG-HA1, SG-HA2, SG-M2e, or mixture of SG-HA1, SG-HA2 and SG-M2e, or vaccinated once intramuscularly with an oil-adjuvant inactivated H9N2 vaccine. Our results demonstrated that vaccination with SG mutants encoding influenza antigens, administered individually or as a mixture, elicited significantly (P < 0.05) greater antigen-specific humoral and cell-mediated immune responses in chickens compared with those vaccinated with SG alone. A conventional H9N2 vaccine induced significantly (P < 0.05) greater HA1 and HA2 antibody responses than SG-based H9N2 vaccine strains, but significantly (P < 0.05) less robust M2e-specific responses. Upon challenge with the virulent H9N2 virus on day 28 post-vaccination, chickens vaccinated with either the SG-based H9N2 or conventional H9N2 vaccines exhibited comparable lung inflammation and viral loads, although both were significantly lower (P < 0.05) than in the group vaccinated with SG alone. In conclusion, our results showed that SG-based vaccination stimulated efficient immune responses against virulent H9N2. Further studies are needed to fully develop this approach as a preventive strategy for low pathogenic avian influenza viruses affecting poultry. RESEARCH HIGHLIGHTS S. gallinarum expressing HA1, HA2 and M2e antigens are immunogenic and safe. Salmonella has dual function of acting as a delivery system and as a natural adjuvant. Vaccine constructs elicit specific humoral and cell-mediated immune responses.


Asunto(s)
Pollos/microbiología , Hemaglutininas/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Salmonella enterica/metabolismo , Administración Oral , Animales , Femenino , Hemaglutininas/genética , Hemaglutininas/metabolismo , Inmunidad Celular , Inmunización/veterinaria , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Mutación , Enfermedades de las Aves de Corral/virología , Salmonella enterica/genética , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/metabolismo
7.
Emerg Infect Dis ; 25(1): 63-72, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561311

RESUMEN

We characterized 55 influenza A(H9N2) viruses isolated in Pakistan during 2014-2016 and found that the hemagglutinin gene is of the G1 lineage and that internal genes have differentiated into a variety of novel genotypes. Some isolates had up to 4-fold reduction in hemagglutination inhibition titers compared with older viruses. Viruses with hemagglutinin A180T/V substitutions conveyed this antigenic diversity and also caused up to 3,500-fold greater binding to avian-like and >20-fold greater binding to human-like sialic acid receptor analogs. This enhanced binding avidity led to reduced virus replication in primary and continuous cell culture. We confirmed that altered receptor-binding avidity of H9N2 viruses, including enhanced binding to human-like receptors, results in antigenic variation in avian influenza viruses. Consequently, current vaccine formulations might not induce adequate protective immunity in poultry, and emergence of isolates with marked avidity for human-like receptors increases the zoonotic risk.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Receptores de Superficie Celular/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Variación Antigénica , Sitios de Unión , Eritrocitos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Gripe Aviar/virología , Neuraminidasa/metabolismo , Pakistán , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/virología , Zoonosis/virología
8.
J Virol ; 91(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28148803

RESUMEN

Segment reassortment and base mutagenesis of influenza A viruses are the primary routes to the rapid evolution of high-fitness virus genotypes. We recently described a predominant G57 genotype of avian H9N2 viruses that caused countrywide outbreaks in chickens in China during 2010 to 2013, which led to the zoonotic emergence of H7N9 viruses. One of the key features of the G57 genotype is the replacement of the earlier A/chicken/Beijing/1/1994 (BJ/94)-like M gene with the A/quail/Hong Kong/G1/1997 (G1)-like M gene of quail origin. We report here the functional significance of the G1-like M gene in H9N2 viruses in conferring increased infection severity and infectivity in primary chicken embryonic fibroblasts and chickens. H9N2 virus housing the G1-like M gene, in place of the BJ/94-like M gene, showed an early surge in viral mRNA and viral RNA (vRNA) transcription that was associated with enhanced viral protein production and with an early elevated release of progeny virus comprising largely spherical rather than filamentous virions. Importantly, H9N2 virus with the G1-like M gene conferred extrapulmonary virus spread in chickens. Five highly represented signature amino acid residues (37A, 95K, 224N, and 242N in the M1 protein and 21G in the M2 protein) encoded by the prevalent G1-like M gene were demonstrated to be prime contributors to enhanced infectivity. Therefore, the genetic evolution of the M gene in H9N2 virus increases reproductive virus fitness, indicating its contribution to the rising virus prevalence in chickens in China.IMPORTANCE We recently described the circulation of a dominant genotype (genotype G57) of H9N2 viruses in countrywide outbreaks in chickens in China, which was responsible, through reassortment, for the emergence of H7N9 viruses that cause severe human infections. A key feature of the genotype G57 H9N2 virus is the presence of the quail-origin G1-like M gene, which had replaced the earlier BJ/94-like M gene. We found that H9N2 virus with the G1-like M gene, but not the BJ/94-like M gene, showed an early surge in progeny virus production and more severe pathology and extrapulmonary virus spread in chickens. Five highly represented amino acid residues in the M1 and M2 proteins derived from the G1-like M gene were shown to mediate enhanced virus infectivity. These observations enhance what we currently know about the roles of reassortment and mutations in virus fitness and have implications for assessing the potential of variant influenza viruses that can cause a rising prevalence in chickens.


Asunto(s)
Fibroblastos/virología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/patología , Virus Reordenados/fisiología , Proteínas de la Matriz Viral/genética , Factores de Virulencia/genética , Replicación Viral , Animales , Pollos , Análisis Mutacional de ADN , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/ultraestructura , Gripe Aviar/virología , Virus Reordenados/genética , Virión/ultraestructura , Virulencia
9.
Immunopharmacol Immunotoxicol ; 40(1): 6-12, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29077528

RESUMEN

CONTEXT: Accumulated evidence has indicated that recombinant Agrocybe aegerita lectin (AAL) possesses immunoadjuvant activity to enhance antigen-specific immune responses. However, the mechanism of how AAL regulates immune response remains poorly defined. AIM: This study is aimed to reveal the mechanism of AAL's immunoadjuvant activity. METHODS: In this study, AAL alone or combined with inactivated avian influenza virus H9N2 was immunized to mice and the transcriptome profile of immunized mice was analyzed. RESULTS: In line with previous studies, our results showed that H9N2-specific IgG level was significantly increased in AAL-treated mice, suggesting the immunoadjuvant activity of AAL. More importantly, transcriptome data revealed that genes participating in the primary adherence, lymphocyte activation, secondary adherence and transmembrane migration of leukocyte migration, were up-regulated by AAL. CONCLUSION: These findings suggest that AAL exerts immunoadjuvant effects by promoting chemotaxis and phagotrophy activity of neutrophil leucocyte and macrophage to improve innate immunity and antigen presentation.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Agrocybe/química , Presentación de Antígeno/efectos de los fármacos , Proteínas Fúngicas/farmacología , Inmunidad Innata/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacología , Lectinas/farmacología , Adyuvantes Inmunológicos/química , Agrocybe/genética , Agrocybe/inmunología , Animales , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Lectinas/química , Lectinas/genética , Lectinas/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología
10.
ACS Infect Dis ; 10(8): 3026-3041, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38970488

RESUMEN

Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention. However, the selective application of cytokines is critical since unregulated expression of cytokines, particularly proinflammatory ones, can cause substantial tissue damage during acute phases of immune responses. Moreover, depending on the type of cytokine and its impact on intestinal microbiota, outcomes of cytokine-gut microflora interaction can have a critical effect on overall host defense against AIV infections. Our recent study demonstrated some prominent roles of chicken IL-17A (ChIL-17A) in regulating antiviral host responses against AIV infection, however, in an in vitro model. For more detailed insights into ChIL-17A function, in the present study, we investigated whether ChIL-17A-meditated elevated antiviral host responses can translate into effective immune protection against AIV infection in an in vivo system. Moreover, considering the role of gut health in fostering innate or local host responses, we further studied the contributory relationships between gut microbiota and host immunity against AIV infection in chickens. For this, we employed a recombinant lactic acid-producing bacterial (LAB) vector, Lactococcus lactis, expressing ChIL-17A and analyzed the in vivo functionality in chickens against an LPAIV (A/H9N2) infection. Our study delineates that mucosal delivery of rL. lactis expressing ChIL-17A triggers proinflammatory signaling cascades and can drive a positive shift in phylum Firmicutes, along with a marked decline in phylum Actinobacteriota and Proteobacteria, favoring effective antiviral host responses against AIV infection in chickens. We propose that ChIL-17A-mediated selective expansion of beneficial gut microbiota might form a healthy microbial community that augments the effective immune protection against AIV infections in chickens.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Gripe Aviar , Interleucina-17 , Animales , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Interleucina-17/genética , Interleucina-17/inmunología , Virus de la Influenza A/inmunología , Vectores Genéticos , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/microbiología
11.
J Vet Sci ; 24(1): e5, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36560837

RESUMEN

The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , República de Corea/epidemiología
12.
Pathogens ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335628

RESUMEN

This study aimed to investigate the potential of H9N2 avian influenza virus to cause disease and intra-species transmission in house crows (Corvus splendens). A group of six crows were intranasally inoculated with 106.0 EID50 of H9N2 virus (A/chicken/India/07OR17/2021), and 24 h post-inoculation six naïve crows were co-housed with infected crows. Crows were observed for 14 days for any overt signs of illness. Oropharyngeal and cloacal swabs were collected up to 14 days to assess virus excretion. No apparent clinical signs were observed in either infected or in-contact crows. Virus excretion was observed only in infected birds up to 9 days post-infection (dpi) through both oropharyngeal and cloacal routes. All six infected crows seroconverted to H9N2 virus at 14 dpi, whereas all in-contact crows remained negative to H9N2 virus antibodies. No virus could be isolated from tissues viz., lung, liver, kidney, pancreas, small intestine and large intestine. Although crows became infected with the H9N2 virus, transmission of the virus was inefficient to the in-contact group. However, virus excretion through oral and cloacal swabs from infected crows suggests a potential threat for inter-species transmission, including humans. Crows, being a common synanthrope species, might have some role in influenza virus transmission to poultry and humans, which needs to be explored further.

13.
Virus Res ; 313: 198745, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306102

RESUMEN

The H9N2 subtype of influenza A virus circulates frequently among poultry in Asian and North African countries causing economic loss in the poultry sector. The antigenic variations of the H9N2 virus were at the origin of its genetic evolution through the emergence of viral strains transmissible to humans and resistant to chemical antivirals, which require a strengthening of the fight means against this virus. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select new antiviral peptides that inhibit the infectivity of H9N2 virus. After three rounds of stringent selection and amplification, polyclonal phage-peptides directed against H9N2 virus were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to H9N2 virus by monoclonal phage ELISA. The DNA of 27 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences were deduced. Sixteen different phage-peptides were able to bind specifically the H9N2 virus, among them, 13 phage-peptides interacted with the hemagglutinin H9. Two selected peptides, P1 (LSRMPK) and P2 (FAPRWR) have shown antiviral activity in ovo and P1 was more protective in vivo then P2 when co-administered with the H9N2 virus. Mechanistically, these peptides prevent infection by inhibiting the attachment of the H9N2 virus to the cellular receptor. Molecular docking revealed that the peptides LSRMPK and FAPRWR bind to hemagglutinin protein H9, but interact differently with the receptor binding site (RBS). The present study demonstrated that the peptide P1 (LSRMPK) could be used as a new inhibitory molecule directed against the H9N2 virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Antivirales/farmacología , Células Epiteliales , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Simulación del Acoplamiento Molecular , Acoplamiento Viral
14.
Transbound Emerg Dis ; 69(2): 881-885, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33523603

RESUMEN

We report the first detection of Y280-lineage H9N2 avian influenza viruses in live bird markets in Korea during July 2020. The viruses were isolated from domestic ducks and chickens traded in three markets in two different provinces, indicating dispersal of the newly introduced viruses. Complete genome sequencing and comparative phylogenetic analyses of all eight gene segments of the viruses showed high nucleotide homology to a Y280-lineage H9N2 avian influenza virus isolated in a chicken farm in China, which belongs to one of the most prevalent H9N2 genotypes in China. Increasing human cases of the same genotype H9N2 infection in China and the mammalian specific markers present in the viruses isolated suggest potential implications for public health.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , China/epidemiología , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Mamíferos , Filogenia , Enfermedades de las Aves de Corral/epidemiología , República de Corea/epidemiología
15.
Front Microbiol ; 12: 655057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967991

RESUMEN

The genotype S (G57) H9N2 virus, which first emerged in 2007 with the substitution of the G1-like PB2 gene for F98-like ones, has become the predominant genotype in the past 10 years. However, whether this substitution plays a role in the fitness of genotype S H9N2 viruses remains unknown. Comparison of the PB2 genes of F98-like and G1-like viruses revealed a close homology in amino acid sequences but great variations at nucleotide levels. We then determined if the packaging region, a unique sequence in each segment utilized for the assembly of the vRNA into virions, played a role in the fitness of the S genotype. The chimeric H9N2 virus with PB2 segments of the G1-like packaging regions significantly increased viral protein levels and polymerase activity. Substituting the packaging regions in the two terminals of F98-like PB2 with the sequence of G1-like further improved its competitive advantage. Substitution of the packaging regions of F98-like PB2 with those of G1-like sequences increased the infectivity of the chimeric virus in the lungs and brains of chicken at 3 days post infection (dpi) and extended the lengths of virus shedding time. Our study suggests that the packaging regions of the G1-like PB2 gene contribute to improve the survival advantage of the genotype S H9N2 virus in China.

16.
Cells ; 9(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028682

RESUMEN

In humans, (A549) cells impaired H9N2 virus nuclear export of the ribonucleoprotein (RNP) complex contrasted with the early and efficient nuclear export of the H1N1/WSN and pH1N1 virus RNP complexes. Although nuclear export of the RNP complex occurred via the nuclear pore complex, H9N2 virus infection also induced modifications in the nuclear envelope and induced cell cytotoxicity. Reduced PA protein levels in H9N2 virus-infected A549 cells occurred, and this phenomenon was independent of virus infection. Silencing the H1N1/WSN PA protein expression leads to impaired nuclear export of RNP complexes, suggesting that the impaired nuclear export of the H9N2 virus RNP complex may be one of the consequences of reduced PA protein levels. Early and efficient export of the RNP complex occurred in H9N2 virus-infected avian (CEF) cells, although structural changes in the nuclear envelope also occurred. Collectively our data suggest that a combination of delayed nuclear export and virus-induced cell cytotoxicity restricts H9N2 virus transmission in A549 cells. However, the early and efficient export of the RNP complex mitigated the effects of virus-induced cytotoxicity on H9N2 virus transmission in CEF cells. Our findings highlight the multi-factorial nature of host-adaptation of the polymerase proteins of avian influenza viruses in non-avian cell environments.


Asunto(s)
Núcleo Celular/metabolismo , Patos/virología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Pulmón/patología , Pulmón/virología , Ribonucleoproteínas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Muerte Celular , Línea Celular , Pollos , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
17.
Vet Microbiol ; 228: 213-218, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30593370

RESUMEN

We developed A/PR/8/34 (PR8) virus-based reverse genetics system in which six internal genes of PR8 and attenuated hemagglutinin and intact neuraminidase genes of field avian influenza viruses (AIVs) have been used for the generation of highly productive recombinant vaccine strains. The 6 + 2 recombinant vaccine strains can induce protective humoral immunity against intended field AIVs; however, the epitopes of B and T cells encoded by internal genes may be important for heterosubtypic protection. Therefore, it is advantageous to use homologous internal genes of field AIVs for recombinant vaccine strains. However, the rescue of recombinant viruses having whole internal genes of field AIVs by the PR8-based reverse genetics system was unsuccessful in some cases. Although partial replacement of an internal gene has been successful for generation of highly productive and mammalian nonpathogenic recombinant viruses, complete replacement of internal genes may be more favorable. In this study, we successfully generated complete recombinant H9N2 AIVs possessing 8 genomes of H9N2 AIVs by optimal combinations of 3' end promoter sequences of polymerase genomes, and a NS genome. All the generated recombinant viruses showed highly productive and mammalian nonpathogenic traits but some of them showed much higher virus titers in embryonated chicken eggs. Additionally, we found the same mutations of NS1 gene determined pathogenicity of AIVs in chicken embryos as well as mammals. Thus, the 3' end promoter optimization, and highly productive and mammalian nonpathogenic internal genes may be useful to develop vaccines against AIVs.


Asunto(s)
Hemaglutininas Virales/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Neuraminidasa/inmunología , Animales , Embrión de Pollo , Pollos/virología , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Regiones Promotoras Genéticas/genética , Genética Inversa , Vacunas Sintéticas/inmunología
18.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228270

RESUMEN

The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform. Sequences were curated using Mothur as described in the MiSeq SOP. Infection of chickens with H9N2 resulted in an increase in phylum Proteobacteria, and differential enrichment with the genera Vampirovibrio, Pseudoflavonifractor, Ruminococcus, Clostridium cluster XIVb and Isobaculum while control chickens were differentially enriched with genera Novosphingobium, Sphingomonas, Bradyrhizobium and Bifidobacterium. Analysis of pre- and post-H9N2 infection of the same chickens showed that, before infection, the fecal microbiota was characterized by Lachnospiracea and Ruminococcaceae family and the genera Clostridium sensu stricto, Roseburia and Lachnospiraceae incertae sedis. However, post-H9N2 infection, class Deltaproteobacteria, orders Clostridiales and Bacteroidiales and the genus Alistipes were differentially enriched. Findings from the current study show that influenza virus infection in chickens results in the shift of the gut microbiota, and the disruption of the host-microbial homeostasis in the gut might be one of the mechanisms by which influenza virus infection is established in chickens.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Pollos/virología , Microbioma Gastrointestinal/fisiología , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar/patología , Animales , Bacterias/genética , Homeostasis/fisiología , Gripe Aviar/microbiología , ARN Ribosómico 16S/genética
19.
Mol Cells ; 41(4): 271-281, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29629559

RESUMEN

IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/ß production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/ß also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.


Asunto(s)
Bronquios/metabolismo , Bronquios/virología , Proteínas Portadoras/biosíntesis , Células Endoteliales/metabolismo , Células Endoteliales/virología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Bronquios/citología , Bronquios/inmunología , Proteínas Portadoras/inmunología , Perros , Células Endoteliales/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Interferón beta/inmunología , Interferón beta/metabolismo , Células de Riñón Canino Madin Darby , Proteínas de Unión al ARN , Transfección , Virión/metabolismo , Replicación Viral/fisiología
20.
Acta Microbiol Immunol Hung ; 65(2): 163-171, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29685054

RESUMEN

Avian influenza (AI) A subtype H9N2 virus belongs to Orthomyxoviridae family and causes low-pathogenic disease AI. The use of gamma-irradiated viral antigens has been developed in the production of effective vaccines. In this research, LPAIV H9N2 strain, A/Chicken/IRN/Ghazvin/2001, was multiplied on SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AI virus (AIV) samples were titrated by EID50 method and hemagglutinin (HA) antigen was analyzed by HA test as the WHO pattern method. Infectivity of irradiated virus was determined by egg inoculation method during four blind cultures. The results showed that after increasing the dose of gamma radiation, virus titer gradually decreased. D10 value and optimum dose for complete virus inactivation were calculated by dose/response curve, 3.36 and 29.52 kGy, respectively. In addition, HA antigenicity of gamma-irradiated virus samples from 0 to 30 kGy was not changed. The results of safety test for gamma-irradiated AIV samples showed complete inactivation with gamma ray doses 30 and 35 kGy, without any multiplication on eggs after four blind cultures. According to the results of HA antigen assay and safety test, the gamma-irradiated and complete inactivated AIV subtype H9N2 is a good candidate as an inactivated immunogenic agent for poultry vaccination.


Asunto(s)
Gripe Aviar/virología , Animales , Antígenos Virales , Pollos , Rayos gamma , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Óvulo/virología , Organismos Libres de Patógenos Específicos , Vacunas de Productos Inactivados , Cultivo de Virus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda