RESUMEN
BACKGROUND: Coronary artery calcification (CAC) is a potential risk marker of coronary atherosclerosis that has high specificity and sensitivity. However, the association between high-density lipoprotein cholesterol (HDL-C) concentration and CAC incidence and progression is controversial. METHODS: PubMed, Embase, Web of Science, and Scopus were systematically searched to identify relevant observational studies up to March 2023 and assessed the methodological quality using Newcastle-Ottawa Scale (NOS) scale. Random-effects meta-analysis was used to estimate pooled odds ratios (OR) and 95% confidence interval considering heterogeneity across studies. RESULTS: Of the 2,411 records, 25 cross-sectional (n = 71,190) and 13 cohort (n = 25,442) studies were included in the systematic review. Ten cross-sectional and eight cohort studies were not eligible and were omitted from the meta-analysis. A total of 15 eligible cross-sectional studies (n = 33,913) were included in the meta-analysis and pooled results revealed no significant association between HDL-C and CAC > 0, CAC > 10, or CAC > 100 [pooled OR: 0.99 (0.97, 1.01)]. Meta-analysis of the 5 eligible prospective cohort studies (n = 10,721) revealed no significant protective effect of high HDL-C against CAC > 0 [pooled OR: 1.02 (0.93, 1.13)]. CONCLUSIONS: According to this analysis of observational studies, high HDL-C levels were not found to predict protection against CAC. These results suggest HDL quality rather than HDL quantity is important for certain aspects of atherogenesis and CAC. REGISTRATION NUMBER: CRD42021292077.
Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Estudios Transversales , Estudios Prospectivos , HDL-Colesterol , Estudios Observacionales como AsuntoRESUMEN
High-density lipoprotein (HDL), best known for cholesterol transport, also has anti-inflammatory effects. Previous studies suggest involvement of myeloperoxidase (MPO) in modification of HDL. HDL bound Sphingosine-1-phosphate (S1P) has been implied to be an essential protein regarding beneficial HDL effects. In this study, we analyzed anti-inflammatory HDL properties in patients with atrial fibrillation (AF), a disease involving atrial inflammation, compared to non-AF controls and whether anti-inflammatory properties improve upon catheter ablation. Additionally, association with serum concentrations of MPO and S1P were assessed. We isolated HDL from 25 AF patients, 13 non-AF individuals and 14 AF patients at follow-up (FU) after catheter ablation. S1P was measured in a cohort of 141 AF and 21 FU patients. Following preincubation with HDL from either group, bovine aortic endothelial cells were stimulated using tumor necrosis factor α and expression of pro-inflammatory genes intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), E-selectin (SELE) and P-selectin (SELP) was assessed using qPCR. Concentrations of circulating protein of these genes as well as MPO and S1P were measured in serum samples. Compared to non-AF individuals HDL from AF patients suppressed gene expression of the pro-inflammatory adhesion molecules ICAM1, VCAM1, SELE and SELP 27%, 18%, 21% and 57% less, respectively (p < 0.05 for all except SELE p = 0.06). In FU patients, the anti-inflammatory HDL activity was improved (suppression of ICAM1 + 22%, VCAM1 + 10%, SELE + 38% and SELP + 75%, p < 0.05 for all except VCAM1 p = 0.08). AF patients using angiotensin converting enzyme inhibitors or angiotensin receptor blockers had better anti-inflammatory HDL properties than non-users (gene expression suppression at least 28% more, p < 0.05 for all except ICAM1 p = 0.051). Circulating protein concentrations were not correlated with in vitro gene-expression, but circulating P-selectin was generally elevated in AF and FU patients compared to non-AF patients. MPO plasma concentration was positively associated with gene-expression of ICAM1, VCAM1 and SELP (r2 > 0.4, p < 0.05). Serum concentrations of S1P were increased in FU patients {1.201 µM [1.077-1.543]} compared to AF patients {0.953 µM [0.807-1.135], p < 0.01} but not correlated with ICAM1, VCAM1 and SELP gene expression. We conclude that the anti-inflammatory activity of HDL is impaired in AF patients, which might promote AF progression and AF-associated complications.
Asunto(s)
Fibrilación Atrial , Animales , Antiinflamatorios , Bovinos , Células Endoteliales , Humanos , Lipoproteínas HDL , Selectina-P , Molécula 1 de Adhesión Celular VascularRESUMEN
BACKGROUND: Obstructive sleep apnea (OSA) is linked to an accelerated risk of cardiovascular disease (CVD). Some key CVD risk factors are present in patients suffering from OSA such as hypertension, inflammation, oxidative stress, and dyslipidemia. High-density lipoprotein (HDL) cholesterol efflux capacity (CEC) is proposed as a reliable biomarker of HDL function and the present study aimed to quantify this biomarker in patients with OSA. METHODS: ATP binding cassette subfamily A member 1 (ABCA1), non-ABCA1, and total CEC were determined in 69 polysomnographic-confirmed OSA patients and 23 controls. Moreover, paraoxonase (PON) activities, high-sensitivity C-reactive protein (hsCRP), apolipoprotein B (apo B), and apolipoprotein A-I (apo A-I) circulating levels were quantified in the studied population. RESULTS: All CEC measures were reduced in the OSA group compared to the control group. Strikingly, ABCA1 CEC was diminished in severe OSA in comparison with mild OSA. Furthermore, PON activities and apo A-I showed lower levels, while hsCRP and apo B were elevated in OSA patients compared to controls. Moreover, ABCA1 CEC showed an inverse association with hsCRP and a positive association with apo A-I, while non-ABCA1 CEC presented an association with HDL-C. CONCLUSION: These results suggest the presence of an impaired HDL function in OSA. In particular, ABCA1 CEC was associated with disease severity and inflammation which could be a factor increasing the risk of CVD.
Asunto(s)
Enfermedades Cardiovasculares , Apnea Obstructiva del Sueño , Humanos , HDL-Colesterol/metabolismo , Apolipoproteína A-I/metabolismo , Proteína C-Reactiva/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Enfermedades Cardiovasculares/etiología , Biomarcadores , Inflamación/complicaciones , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Índice de Severidad de la Enfermedad , Apolipoproteínas BRESUMEN
BACKGROUND: High-density lipoprotein (HDL) plays a critical role in protection against atherosclerosic and cardiovascular disease (ASCVD). In addition to contributing to clearing excess vascular cholesterol, HDL particles exhibit antioxidative functions, helping to attenuate adverse effects of oxidized low-density lipoproteins. However, these beneficial properties can be undermined by oxidative stress, inflammation, and unhealthy lifestyles and diet, as well as influenced by race and sex. Thus, when assessing cardiovascular risk, it is important to consider multifactorial aspects of HDL, including antioxidant activity rather than just total amount and type of HDL-cholesterol (HDL-C) particles. Because prior research showed HDL peroxide content (HDLperox) can be inversely associated with normal anti-oxidant HDL activity, elevated HDLperox may serve as a bioindicator of HDL dysfunction. METHODS: In this study, data from a large national cohort of Americans was utilized to determine the impact of sex, race, and diabetes status on HDLperox in middle-aged and older adults. A previously developed cell-free fluorometric method was utilized to quantify HDLperox in serum depleted of apo-B containing lipoproteins. RESULTS: In keeping with predictions, white men and diabetics exhibited HDLperox in the atypical upper range, suggestive of less functional HDL. White men had higher HDLperox levels than African American males (13.46 ± 6.10 vs. 10.88 ± 5.81, p < .001). There was also a significant main effect of type 2 diabetes (F(1,1901) = 14.9, p < .0001). Overall, African Americans evinced lower HDLperox levels, despite more obesity (10.3 ± 4.7 vs.11.81 ± 5.66 for Whites) suggesting that other aspects of lipid metabolism and psychosocial factors account for the higher prevalence of ASCVD in African Americans. CONCLUSION: This research helps to provide a more comprehensive understanding of HDL function in a racially and metabolically diverse adult population. HDLperox content was significantly different in adults with type 2 diabetes, and distinctive in nondiabetic White males, and suggests other processes account for the higher prevalence of ASCVD among African Americans.
Asunto(s)
HDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Peróxidos Lipídicos/sangre , Grupos Raciales/estadística & datos numéricos , Negro o Afroamericano/estadística & datos numéricos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Estados Unidos , Población Blanca/estadística & datos numéricosRESUMEN
Oxidative stress promotes acute kidney injury (AKI). Higher HDL cholesterol concentrations are associated with less AKI. To test the hypothesis that HDL antioxidant activity is associated with AKI after cardiac surgery, we quantified HDL particle (HDL-P) size and number, paraoxonase-1 (PON-1) activity, and isofuran concentrations in 75 patients who developed AKI and 75 matched control patients. Higher preoperative HDL-P was associated with less AKI (OR: 0.80; 95% CI, 0.71-0.91; P = 0.001), higher PON-1 activity ( P < 0.001), and lower plasma concentrations of isofurans immediately after surgery (P = 0.02). Similarly, higher preoperative small HDL-P was associated with less AKI, higher PON-1 activity, and lower isofuran concentrations. Higher intraoperative particle losses were associated with less AKI (OR: 0.79; 95% CI 0.67-0.93; P = 0.005), and with decreased postoperative isofuran concentrations (P = 0.04) . Additionally, higher preoperative small HDL-P and increased intraoperative small particle loss were associated with improved long-term renal function (P = 0.003, 0.01, respectively). In conclusion, a higher preoperative concentration of HDL-P, particularly small particles, is associated with lower oxidative damage and less AKI. Perioperative changes in HDL-P concentrations are also associated with AKI. Small HDL-P may represent a novel modifiable risk factor for AKI.
Asunto(s)
Lipoproteínas HDLRESUMEN
BACKGROUND: The efficiency of high-density lipoprotein (HDL) to efflux cholesterol contributes to the reverse cholesterol transport (RCT) pathway as one of HDL's proposed functions and depends on the ability of HDL to uptake cholesterol. We aimed to investigate cholesterol uptake capacity (CUC) by a newly developed assay in samples from the MASHAD (Mashhad Stroke and Heart Atherosclerotic Disorders) cohort study. METHOD: The study population comprised 153 individuals developed CVD diagnosed by a specialist cardiologist, over 6 years of follow-up, and 350 subjects without CVD. We used a modified CUC method to evaluate the functionality of HDL in serum samples. RESULT: The CUC assay was highly reproducible with values for inter- and intra-assay variation of 13.07 and 6.65, respectively. The mean serum CUC was significantly lower in the CVD group compared to control (p = 0.01). Although, there were no significant differences in serum HDL-C between the groups and there was no significantly association with risk of progressive CVD. Multivariate logistic regression analysis showed that there was a significantly negative association between CUC and risk of CVD after adjustment for confounding parameters (OR = 0.57, 95% CI = 0.38-0.87, p = 0.009). The CUC was also inversely and independently associated with the risk of CVD event using Cox proportional hazards models analysis (HR = 0.62; 95% CI = 0.41-0.94, p = 0.02). We determined the optimum cutoff value of 1.7 a.u for CUC in the population. Furthermore, the CUC value was important in determining the CVD risk stratification derived from data mining analysis. CONCLUSIONS: Reduced HDL functionality, as measured by CUC, appears to predict CVD in population sample from north-eastern Iran.
Asunto(s)
Enfermedades Cardiovasculares/sangre , HDL-Colesterol/metabolismo , Adulto , Colesterol/metabolismo , HDL-Colesterol/sangre , Estudios de Cohortes , Minería de Datos , Femenino , Humanos , Irán , Modelos Logísticos , Masculino , Persona de Mediana Edad , Factores de RiesgoRESUMEN
BACKGROUNDS AND AIMS: Prevention of cardiovascular (CV) disease is considered a central issue in public health and great attention is payed to nutritional approaches, including consumption of functional foods to reduce CV risk in individuals without indications for anti-atherosclerotic drugs. Cholesterol efflux capacity (CEC) is an important anti-atherogenic property of HDL and a marker of CV risk. We evaluated the effect of a daily consumption of an innovative whole-wheat synbiotic pasta, compared to a control whole-wheat pasta, on serum ATP binding cassette G1 (ABCG1)-mediated CEC in healthy overweight or obese individuals. METHODS AND RESULTS: Study participants (n = 41) were randomly allocated to either innovative or control pasta, consumed daily for twelve weeks. Serum CEC was measured before and after the dietary intervention, by a well-established radioisotopic technique on Chinese Hamster Ovary Cells transfected with human ABCG1. The innovative synbiotic pasta consumption was associated to a significantly higher post treatment/baseline ratio of ABCG1-mediated CEC values with respect to control pasta (mean ratio 1.05 ± 0.037 and 0.95 ± 0.042 respectively, p < 0.05). Analysis of the relationship between ABCG1-mediated CEC and glycemia, homocysteine, total folates and interleukin-6 showed specific changes in the correlations between HDL function and glycemia, oxidative and inflammatory markers only after synbiotic pasta consumption. CONCLUSION: This is the first report on serum CEC improvement obtained by a new synbiotic functional pasta consumption, in absence of lipid profile modifications, in overweight/obese participants. This pilot study suggests that a simple dietary intervention can be a promising approach to CV preservation through improving of athero-protective HDL function.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/sangre , HDL-Colesterol/sangre , Dieta Saludable , Alimentos Funcionales , Obesidad Metabólica Benigna/dietoterapia , Simbióticos/administración & dosificación , Granos Enteros , Adulto , Anciano , Biomarcadores/sangre , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Obesidad Metabólica Benigna/sangre , Obesidad Metabólica Benigna/fisiopatología , Proyectos Piloto , Método Simple Ciego , Factores de Tiempo , Resultado del Tratamiento , Granos Enteros/metabolismoRESUMEN
AIMS: High-density lipoprotein (HDL) function may be altered in patients with chronic disease, transforming the particle from a beneficial vasoprotective molecule to a noxious pro-inflammatory equivalent. Adolescents with Type 1 diabetes often have elevated HDL, but its vasoprotective properties and relationship to endothelial function have not been assessed. METHODS AND RESULTS: Seventy adolescents with Type 1 diabetes (age 10-17 years) and 30 age-matched healthy controls supplied urine samples for the measurement of early renal dysfunction (albumin:creatinine ratio; ACR), blood samples for the assessment of cardiovascular risk factors (lipid profiles, HDL functionality, glycaemic control, and inflammatory risk score), and had their conduit artery endothelial function tested using flow-mediated dilation (FMD). HDL-c levels (1.69 ± 0.41 vs. 1.44 ± 0.29mmol/L; P < 0.001), and glycated haemoglobin (HbA1c) (8.4 ± 1.2 vs. 5.4 ± 0.2%; P < 0.001) were increased in all patients compared with controls. However, increased inflammation and HDL dysfunction were evident only in patients who also had evidence of early renal dysfunction (mean ± standard deviation for high-ACR vs. low-ACR and healthy controls: inflammatory risk score 11.3 ± 2.5 vs. 9.5 ± 2.4 and 9.2 ± 2.4, P < 0.01; HDL-mediated nitric-oxide bioavailability 38.0 ± 8.9 vs. 33.3 ± 7.3 and 25.0 ± 7.7%, P < 0.001; HDL-mediated superoxide production 3.71 ± 3.57 vs. 2.11 ± 3.49 and 1.91 ± 2.47nmol O2 per 250 000 cells, P < 0.05). Endothelial function (FMD) was impaired only in those who had both a high inflammatory risk score and high levels of HDL-c (P < 0.05). CONCLUSION: Increased levels of HDL-c commonly observed in individuals with Type 1 diabetes may be detrimental to endothelial function when accompanied by renal dysfunction and chronic inflammation.
Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Endotelio Vascular/fisiopatología , Hiperlipidemias/etiología , Inflamación/etiología , Lipoproteínas HDL/sangre , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Enfermedad Crónica , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/fisiopatología , Inflamación/sangre , Inflamación/fisiopatología , Masculino , Insuficiencia Renal/sangre , Insuficiencia Renal/etiología , Insuficiencia Renal/fisiopatologíaRESUMEN
High-density lipoprotein (HDL) function rather than level may better predict cardiovascular disease (CVD). However, the contribution of the impaired antioxidant function of HDL that is associated with increased HDL lipid peroxidation (HDLox) to the development of clinical CVD remains unclear. We have investigated the association between serum HDLox with incident CVD outcomes in Mashhad cohort. Three-hundred and thirty individuals who had a median follow-up period of 7 years were recruited as part of the cohort. The primary end point was cardiovascular event, including myocardial infarction, stable angina, unstable angina, or coronary revascularization. In both univariate/multivariate analyses adjusted for traditional CVD risk factors, HDLox was an independent risk factor for CVD (odds ratio, 1.62; 95% confidence interval, 1.41-1.86; p < 0.001). For every increase in HDLox by 0.1 unit, there was an increase in CVD risk by 1.62-fold. In an adjusted analysis, there was a >2.5-fold increase in cardiovascular risk in individuals with HDLox higher than cutoff point of 1.06 compared to those with lower scores, suggesting HDLox > 1.06 is related to the impaired HDL oxidant function and in turn exposed to elevated risk of CVD outcomes (hazard ratio, 2.72; 95% CI, 1.88-3.94). Higher HDLox is a surrogate measure of reduced HDL antioxidant function that positively associated with cardiovascular events in a population-based cohort.
RESUMEN
Increased morbidity and mortality in atrial fibrillation (AF) are related to the pro-fibrotic, pro-thrombotic, and pro-inflammatory processes that underpin the disease. High-density lipoproteins (HDL) have anti-inflammatory, anti-oxidative, and anti-thrombotic properties. Functional impairment of HDL may, therefore, associate with AF initiation or progression. We studied indices of HDL quality and quantity of AF patients and healthy controls, including HDL-particle number, HDL cholesterol, apolipoprotein (apo) A-I levels, serum amyloid A (SAA) content and HDL-cholesterol efflux capacity, and paraoxonase activity of apoB-depleted serum. Serum samples were collected from AF patients (n = 91) before catheter ablation and from age- and sex-matched control subjects (n = 54). HDL-cholesterol efflux capacity was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. Lecithin-cholesterol acyltransferase (LCAT) and paraoxonase activities were assessed using fluorometric assays, SAA levels were determined by ELISA, and total and subclass HDL-particle number was assessed by nuclear magnetic resonance spectroscopy. ApoA-I levels were determined by immunoturbidimetry. HDL-cholesterol efflux capacity, HDL-particle number, apoA-I levels, and LCAT activity were markedly reduced in AF patients when compared to healthy individuals (all p < 0.001), whereas HDL-associated paraoxonase activity and SAA content were not altered (p = 0.578, p = 0.681). Notably, cholesterol efflux capacity, HDL-particle number, apoA-I levels as well as LCAT activity recovered following restoration of sinus rhythm (all p < 0.001). We identified marked alterations in HDL function, HDL maturation, and HDL-particle number in AF patients. Assessing HDL-particle number and function in AF may be used as a surrogate marker of AF onset and progression and may help identifying patients at high risk.
Asunto(s)
Fibrilación Atrial/sangre , HDL-Colesterol/sangre , Dislipidemias/sangre , Anciano , Apolipoproteína A-I/sangre , Arildialquilfosfatasa/sangre , Fibrilación Atrial/diagnóstico , Biomarcadores/sangre , Estudios de Casos y Controles , Dislipidemias/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Proteína Amiloide A Sérica/metabolismoRESUMEN
BACKGROUND: The aim of our study was to evaluate high-density lipoprotein cholesterol (HDL-C) efflux capacity in healthy controls and patients with severe dyslipidemia. Evaluation of HDL function may be beneficial for better understanding of cardiovascular diseases, as well as for taking actions to minimize residual cardiovascular risk. METHODS: During 2016-2017 a total of 93 participants - 48 (51.6%) women and 45 (48.4%) men - were included in this cross-sectional study. Data of 45 (48.4%) participants with severe dyslipidemia (SD) and 48 (51.6%) controls without dyslipidemia was used for statistical analysis. Total lipid panel, concentration of lipoprotein (a) and apolipoproteins were measured, data about cardiovascular risk factors were collected and detailed evaluation of HDL-C quality was performed for all patients. RESULTS: Increased HDL-C concentration was associated with higher ApoA1 (r = 0.866 in controls, r = 0.63 in SD group), ApoA2 (r = 0.41 in controls, r = 0.418 in SD group) and LDL-C concentrations (r = - 0.412 in SD group), lower ApoE (r = - 0.314 in SD group) and TG concentrations (r = - 0.38 in controls, r = - 0.608 in SD group), lower ApoB/ApoA1 ratio (r = - 0.567 in control group), below average HDL-C efflux capacity (r = - 0.335 in SD group), lower BMI (r = - 0.327 in controls, r = - 0.531 in SD group) and abdominal circumference (r = - 0.309 in women with SD). Below-average HDL-C efflux capacity was found in 67.7% (N = 63) of participants. It was more often found among patients with normal weight or BMI 30-31 kg/m2. HDL-C efflux capacity was inversely associated with HDL-C concentration (r = - 0.228). CONCLUSION: Abnormal HDL function may be associated with residual cardiovascular risk in Lithuanian population.
Asunto(s)
HDL-Colesterol/sangre , Dislipidemias/sangre , Adulto , Apolipoproteína A-I/sangre , Apolipoproteínas/sangre , Apolipoproteínas B/sangre , Estudios Transversales , Femenino , Humanos , Lipoproteína(a)/sangre , Masculino , Persona de Mediana Edad , Factores de RiesgoRESUMEN
CVD remains the leading cause of morbidity and mortality in patients with chronic kidney disease (CKD). CKD profoundly affects HDL composition and functionality, but whether abnormal HDL independently contributes to cardiovascular events in CKD patients remains elusive. In the present study, we assessed whether compositional and functional properties of HDL predict cardiovascular outcome among 526 nondialysis CKD patients who participate in the CARE FOR HOMe study. We measured HDL cholesterol, the content of HDL-associated proinflammatory serum amyloid A (SAA), and activities of the HDL enzymes paraoxonase and lipoprotein-associated phospholipase A2 (Lp-PLA2). In addition, we assessed the antioxidative activity of apoB-depleted serum. During a mean follow-up of 5.1 ± 2.1 years, 153 patients reached the predefined primary endpoint, a composite of atherosclerotic cardiovascular events including cardiovascular mortality and death of any cause. In univariate Cox regression analyses, lower HDL-cholesterol levels, higher HDL-associated SAA content, and lower paraoxonase activity predicted cardiovascular outcome, while Lp-PLA2 activity and antioxidative capacity did not. HDL-cholesterol and HDL-paraoxonase activity lost their association with cardiovascular outcome after adjustment for traditional cardiovascular and renal risk factors, while SAA lost its association after further adjustment for C-reactive protein. In conclusion, our data suggest that neither HDL quantity nor HDL composition or function independently predict cardiovascular outcome among nondialysis CKD patients.
Asunto(s)
Enfermedades Cardiovasculares/complicaciones , HDL-Colesterol/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Cuidados Posteriores , Anciano , HDL-Colesterol/química , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.
Asunto(s)
Apolipoproteína A-I/sangre , Apolipoproteína C-III/sangre , Apolipoproteínas B/sangre , HDL-Colesterol/sangre , Cirrosis Hepática/sangre , Hígado/metabolismo , Anciano , Apolipoproteínas E/sangre , Arildialquilfosfatasa/sangre , Bilirrubina/sangre , LDL-Colesterol/sangre , Creatinina/sangre , Estudios Transversales , Citocinas/biosíntesis , Citocinas/metabolismo , Femenino , Humanos , Hígado/patología , Hígado/fisiopatología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Monocitos/patología , Albúmina Sérica/metabolismo , Proteína Amiloide A Sérica , Análisis de Supervivencia , Triglicéridos/sangreRESUMEN
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Asunto(s)
Anticolesterolemiantes/farmacología , Ácidos y Sales Biliares/metabolismo , Ésteres del Colesterol/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Péptido Hidrolasas/farmacología , Animales , Apolipoproteínas E/metabolismo , Línea Celular Tumoral , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Regulación de la Expresión Génica , Humanos , Hidrólisis , Cinética , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Patients with type 1 diabetes (T1D) are at increased risk of cardiovascular disease (CVD). Measures of high-density lipoprotein (HDL) function provide a better risk estimate for future CVD events than serum levels of HDL cholesterol. The objective of this study was to evaluate HDL function in T1D patients shortly after disease onset compared with healthy control subjects. METHODS: Participants in the atherosclerosis and childhood diabetes study were examined at baseline and after 5 years. At baseline, the cohort included 293 T1D patients with a mean age of 13.7 years and mean HbA1c of 8.4%, along with 111 healthy control subjects. Their HDL function, quantified by HDL-apoA-I exchange (HAE), was assessed at both time points. HAE is a measure of HDL's dynamic property, specifically its ability to release lipid-poor apolipoprotein A-I (apoA-I), an essential step in reverse cholesterol transport. RESULTS: The HAE-apoA-I ratio, reflecting the HDL function per concentration unit apoA-I, was significantly lower in the diabetes group both at baseline, 0.33 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p < 0.001 and at follow-up, 0.34 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p = 0.003. HAE-apoA-I ratio was significantly and inversely correlated with HbA1c in the diabetes group. Over the 5 years of the study, the mean HAE-apoA-I ratio remained consistent in both groups. Individual changes were less than 15% for half of the study participants. CONCLUSIONS: This study shows reduced HDL function, quantified as HAE-apoA-I ratio, in children and young adults with T1D compared with healthy control subjects. The differences in HDL function appeared shortly after disease onset and persisted over time.
Asunto(s)
HDL-Colesterol/sangre , Diabetes Mellitus Tipo 1/metabolismo , Lipoproteínas HDL/sangre , Adolescente , Apolipoproteína A-I/sangre , Aterosclerosis/sangre , Transporte Biológico/fisiología , Niño , Femenino , Humanos , MasculinoRESUMEN
Background: HDL function may be more important than HDL concentration in determining risk for cardiovascular disease. In addition, HDL is a carrier of carotenoids and antioxidant enzymes, which protect HDL and LDL particles against oxidation.Objective: The goal of this study was to determine the impact of consuming 0-3 eggs/d on LDL and HDL particle size, HDL function, and plasma antioxidants in a young, healthy population.Methods: Thirty-eight healthy men and women [age 18-30 y, body mass index (in kg/m2) 18.5-29.9] participated in this 14-wk crossover intervention. Subjects underwent a 2-wk washout (0 eggs/d) followed by sequentially increasing intake of 1, 2, and 3 eggs/d for 4 wk each. After each period, fasting blood was collected for analysis of lipoprotein subfractions, plasma apolipoprotein (apo) concentration, lutein and zeaxanthin concentration, and activities of lecithin-cholesterol acyltransferase, cholesteryl ester transfer protein, and paraoxonase-1.Results: Compared with intake of 0 eggs/d, consuming 1-3 eggs/d resulted in increased large-LDL (21-37%) and large-HDL (6-13%) particle concentrations, plasma apoAI (9-15%), and lecithin-cholesterol acyltransferase activity (5-15%) (P < 0.05 for all biomarkers). Intake of 2-3 eggs/d also promoted an 11% increase in apoAII (P < 0.05) and a 20-31% increase in plasma lutein and zeaxanthin (P < 0.05), whereas intake of 3 eggs/d resulted in a 9-16% increase in serum paraoxonase-1 activity compared with intake of 1-2 eggs/d (P < 0.05). Egg intake did not affect cholesteryl ester transfer protein activity.Conclusions: Intake of 1 egg/d was sufficient to increase HDL function and large-LDL particle concentration; however, intake of 2-3 eggs/d supported greater improvements in HDL function as well as increased plasma carotenoids. Overall, intake of ≤3 eggs/d favored a less atherogenic LDL particle profile, improved HDL function, and increased plasma antioxidants in young, healthy adults. This trial was registered at clinicaltrials.gov as NCT02531958.
Asunto(s)
Antioxidantes/metabolismo , HDL-Colesterol/sangre , Dieta , Huevos , Adolescente , Adulto , Apolipoproteínas/sangre , Apolipoproteínas/metabolismo , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , HDL-Colesterol/fisiología , Estudios Cruzados , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
Psoriasis is a chronic inflammatory systemic disease with a prevalence of 2-3%. Overwhelming evidence show an epidemiological association between psoriasis, cardiovascular disease and atherosclerosis. Cardiovascular disease is the most frequent cause of death in patients with severe psoriasis. Several cardiovascular disease classical risk factors are also increased in psoriasis but the psoriasis-associated risk persists after adjusting for other risk factors.Investigation has focused on finding explanations for these epidemiological data. Several studies have demonstrated significant lipid metabolism and HDL composition and function alterations in psoriatic patients. Altered HDL function is clearly one of the mechanisms involved, as these particles are of the utmost importance in atherosclerosis defense. Recent data indicate that biologic therapy can reverse both structural and functional HDL alterations in psoriasis, reinforcing their therapeutic potential.
Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Metabolismo de los Lípidos , Lipoproteínas HDL/efectos adversos , Psoriasis/complicaciones , Aterosclerosis/inducido químicamente , Aterosclerosis/epidemiología , Enfermedades Cardiovasculares/epidemiología , Humanos , Psoriasis/epidemiología , Factores de RiesgoRESUMEN
Emerging CVD risk factors (e.g. HDL function and central haemodynamics) may account for residual CVD risk experienced by individuals who meet LDL-cholesterol and blood pressure (BP) targets. Recent evidence suggests that these emerging risk factors can be modified by polyphenol-rich interventions such as soya, but additional research is needed. This study was designed to investigate the effects of an isoflavone-containing soya protein isolate (delivering 25 and 50 g/d soya protein) on HDL function (i.e. ex vivo cholesterol efflux), macrovascular function and blood markers of CVD risk. Middle-aged adults (n 20; mean age=51·6 (sem 6·6) years) with moderately elevated brachial BP (mean systolic BP=129 (sem 9) mmHg; mean diastolic BP=82·5 (sem 8·4) mmHg) consumed 0 (control), 25 and 50 g/d soya protein in a randomised cross-over design. Soya and control powders were consumed for 6 weeks each with a 2-week compliance break between treatment periods. Blood samples and vascular function measures were obtained at baseline and following each supplementation period. Supplementation with 50 g/d soya protein significantly reduced brachial diastolic BP (-2·3 mmHg) compared with 25 g/d soya protein (Tukey-adjusted P=0·03) but not the control. Soya supplementation did not improve ex vivo cholesterol efflux, macrovascular function or other blood markers of CVD risk compared with the carbohydrate-matched control. Additional research is needed to clarify whether effects on these CVD risk factors depend on the relative health of participants and/or equol producing capacity.
Asunto(s)
Enfermedades Cardiovasculares/sangre , Colesterol/metabolismo , Hipertensión/sangre , Isoflavonas/química , Proteínas de Soja/farmacología , Adulto , Arteriosclerosis/tratamiento farmacológico , Biomarcadores , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Proteínas de Soja/químicaRESUMEN
BACKGROUND: Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 µm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. METHODS: Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 µg/m(3), ozone targeted at 240 µg/m(3) (120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. RESULTS: There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). CONCLUSIONS: Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti-oxidant/anti-inflammatory functionality, which could indicate a potential mechanism for how particulate air pollution induces harmful cardiovascular effects.
Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/etiología , Lipoproteínas HDL/sangre , Modelos Biológicos , Ozono/toxicidad , Material Particulado/toxicidad , Salud Urbana , Adulto , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/inmunología , Estudios de Cohortes , Estudios Cruzados , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Oxidantes/química , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/química , Riesgo , Método Simple Ciego , Adulto JovenRESUMEN
BACKGROUND: The residual risk that remains after statin treatment supports the addition of other LDL-C-lowering agents and has stimulated the search for secondary treatment targets. Epidemiological studies propose HDL-C as a possible candidate. Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from atheroprotective HDL to atherogenic (V)LDL. The CETP inhibitor anacetrapib decreases (V)LDL-C by â¼15-40% and increases HDL-C by â¼40-140% in clinical trials. We evaluated the effects of a broad dose range of anacetrapib on atherosclerosis and HDL function, and examined possible additive/synergistic effects of anacetrapib on top of atorvastatin in APOE*3Leiden.CETP mice. METHODS AND RESULTS: Mice were fed a diet without or with ascending dosages of anacetrapib (0.03; 0.3; 3; 30 mg/kg/day), atorvastatin (2.4 mg/kg/day) alone or in combination with anacetrapib (0.3 mg/kg/day) for 21 weeks. Anacetrapib dose-dependently reduced CETP activity (-59 to -100%, P < 0.001), thereby decreasing non-HDL-C (-24 to -45%, P < 0.001) and increasing HDL-C (+30 to +86%, P < 0.001). Anacetrapib dose-dependently reduced the atherosclerotic lesion area (-41 to -92%, P < 0.01) and severity, increased plaque stability index and added to the effects of atorvastatin by further decreasing lesion size (-95%, P < 0.001) and severity. Analysis of covariance showed that both anacetrapib (P < 0.05) and non-HDL-C (P < 0.001), but not HDL-C (P = 0.76), independently determined lesion size. CONCLUSION: Anacetrapib dose-dependently reduces atherosclerosis, and adds to the anti-atherogenic effects of atorvastatin, which is mainly ascribed to a reduction in non-HDL-C. In addition, anacetrapib improves lesion stability.