Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35853453

RESUMEN

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Asunto(s)
Mariposas Diurnas , Transferencia de Gen Horizontal , Animales , Mariposas Diurnas/genética , Cortejo , Evolución Molecular , Masculino , Filogenia
2.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561802

RESUMEN

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Morfogénesis/genética , Epidermis , Sistema Nervioso Periférico , Larva/genética , Celulosa
3.
J Bacteriol ; 206(4): e0000624, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38445859

RESUMEN

Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.


Asunto(s)
Biopelículas , Ecosistema , Humanos , ADN Bacteriano/genética , Bacterias/genética , Matriz Extracelular
4.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37879113

RESUMEN

In phylogenomics, incongruences between gene trees, resulting from both artifactual and biological reasons, can decrease the signal-to-noise ratio and complicate species tree inference. The amount of data handled today in classical phylogenomic analyses precludes manual error detection and removal. However, a simple and efficient way to automate the identification of outliers from a collection of gene trees is still missing. Here, we present PhylteR, a method that allows rapid and accurate detection of outlier sequences in phylogenomic datasets, i.e. species from individual gene trees that do not follow the general trend. PhylteR relies on DISTATIS, an extension of multidimensional scaling to 3 dimensions to compare multiple distance matrices at once. In PhylteR, these distance matrices extracted from individual gene phylogenies represent evolutionary distances between species according to each gene. On simulated datasets, we show that PhylteR identifies outliers with more sensitivity and precision than a comparable existing method. We also show that PhylteR is not sensitive to ILS-induced incongruences, which is a desirable feature. On a biological dataset of 14,463 genes for 53 species previously assembled for Carnivora phylogenomics, we show (i) that PhylteR identifies as outliers sequences that can be considered as such by other means, and (ii) that the removal of these sequences improves the concordance between the gene trees and the species tree. Thanks to the generation of numerous graphical outputs, PhylteR also allows for the rapid and easy visual characterization of the dataset at hand, thus aiding in the precise identification of errors. PhylteR is distributed as an R package on CRAN and as containerized versions (docker and singularity).


Asunto(s)
Evolución Biológica , Filogenia
5.
RNA ; 28(10): 1337-1347, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868841

RESUMEN

The Standard Genetic Code (SGC) can arise by fusion of partial codes evolved in different individuals, perhaps for differing prior tasks. Such code fragments can be unified into an SGC after later evolution of accurate third-position Crick wobble. Late wobble advent fills in the coding table, leaving only later development of translational initiation and termination to reach the SGC in separated domains of life. This code fusion mechanism is computationally implemented here. Late Crick wobble after C3 fusion (c3-lCw) is tested for its ability to evolve the SGC. Compared with previously studied isolated coding tables, or with increasing numbers of parallel, but nonfusing codes, c3-lCw reaches the SGC sooner, is successful in a smaller population, and presents accurate and complete codes more frequently. Notably, a long crescendo of SGC-like codes is exposed for selection of superior translation. c3-lCw also effectively suppresses varied disordered assignments, thus converging on a unified code. Such merged codes closely approach the SGC, making its selection plausible. For example: Under routine conditions, ≈1 of 22 c3-lCw environments evolves codes with ≥20 assignments and ≤3 differences from the SGC, notably including codes identical to the Standard Genetic Code.


Asunto(s)
Evolución Molecular , Código Genético , Codón , Humanos , Modelos Genéticos
6.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987681

RESUMEN

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Factores de Virulencia , Secuenciación Completa del Genoma , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/clasificación , Humanos , Egipto , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Antibacterianos/farmacología , Factores de Virulencia/genética , Genoma Bacteriano/genética , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Plásmidos/genética
7.
New Phytol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044460

RESUMEN

The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.

8.
Mol Phylogenet Evol ; 195: 108069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565359

RESUMEN

Microbial lipases play a pivotal role in a wide range of biotechnological processes and in the human skin microbiome. However, their evolution remains poorly understood. Accessing the evolutionary process of lipases could contribute to future applications in health and biotechnology. We investigated genetic events associated with the evolutionary trajectory of the microbial family LIP lipases. Using phylogenetic analysis, we identified two distinct horizontal gene transfer (HGT) events from Bacteria to Fungi. Further analysis of human cutaneous mycobiome members such as the lipophilic Malassezia yeasts and CUG-Ser-1 clade (including Candida sp. and other microorganisms associated with cutaneous mycobiota) revealed recent evolutionary processes, with multiple gene duplication events. The Lid region of fungal lipases, crucial for substrate interaction, exhibits varying degrees of conservation among different groups. Our findings suggest the adaptability of the fungal LIP family in various genetic and metabolic contexts and its potential role in niche exploration.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Humanos , Filogenia , Bacterias/genética , Duplicación de Gen
9.
Virol J ; 21(1): 6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178191

RESUMEN

BACKGROUND: In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD: Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS: While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION: Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.


Asunto(s)
Coinfección , Euphorbia , Ácidos Nucleicos , Virus de Plantas , Potyviridae , Virus ARN , Inosina Trifosfatasa , Filogenia , Virus ARN/genética , Nucleótidos/genética , Potyviridae/genética , Virus de Plantas/genética , Plantas/genética , ARN Viral/genética , Genoma Viral
10.
J Hered ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551670

RESUMEN

Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27 % of the genome, and 99.0 % of expected single-copy orthologous genes were fully assembled. We identified 12657 genes, fewer than in the four other species studied, and 46.4 % fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7258 orthogroups shared between RFUNE and AGLAB, 1461 had more copies in AGLAB and 1023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.

11.
World J Surg Oncol ; 22(1): 201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080678

RESUMEN

BACKGROUND: Cross-species horizontal gene transfer (HGT) involves the transfer of genetic material between different species of organisms. In recent years, mounting evidence has emerged that cross-species HGT does take place and may play a role in the development and progression of diseases. METHODS: Transcriptomic data obtained from patients with gallbladder cancer (GBC) was assessed for the differential expression of antisense RNAs (asRNAs). The Basic Local Alignment Search Tool (BLAST) was used for cross-species analysis with viral, bacterial, fungal, and ancient human genomes to elucidate the evolutionary cross species origins of these differential asRNAs. Functional enrichment analysis and text mining were conducted and a network of asRNAs targeting mRNAs was constructed to understand the function of differential asRNAs better. RESULTS: A total of 17 differentially expressed antisense RNAs (asRNAs) were identified in gallbladder cancer tissue compared to that of normal gallbladder. BLAST analysis of 15 of these asRNAs (AFAP1-AS1, HMGA2-AS1, MNX1-AS1, SLC2A1-AS1, BBOX1-AS1, ELFN1-AS1, TRPM2-AS, DNAH17-AS1, DCST1-AS1, VPS9D1-AS1, MIR1-1HG-AS1, HAND2-AS1, PGM5P4-AS1, PGM5P3-AS1, and MAGI2-AS) showed varying degree of similarities with bacterial and viral genomes, except for UNC5B-AS1 and SOX21-AS1, which were conserved during evolution. Two of these 15 asRNAs, (VPS9D1-AS1 and SLC2A1-AS1) exhibited a high degree of similarity with viral genomes (Chikungunya virus, Human immunodeficiency virus 1, Stealth virus 1, and Zika virus) and bacterial genomes including (Staphylococcus sp., Bradyrhizobium sp., Pasteurella multocida sp., and, Klebsiella pneumoniae sp.), indicating potential HGT during evolution. CONCLUSION: The results provide novel evidence supporting the hypothesis that differentially expressed asRNAs in GBC exhibit varying sequence similarity with bacterial, viral, and ancient human genomes, indicating a potential shared evolutionary origin. These non-coding genes are enriched with methylation and were found to be associated with cancer-related pathways, including the P53 and PI3K-AKT signaling pathways, suggesting their possible involvement in tumor development.


Asunto(s)
Neoplasias de la Vesícula Biliar , Transferencia de Gen Horizontal , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/virología , Carcinogénesis/genética , ARN sin Sentido/genética , Regulación Neoplásica de la Expresión Génica , Transcriptoma
12.
BMC Biol ; 21(1): 102, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158891

RESUMEN

BACKGROUND: Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS: Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS: The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.


Asunto(s)
Saccharomyces , Transaminasas , Saccharomyces/genética , Transferencia de Gen Horizontal , Filogenia , Saccharomyces cerevisiae , Aminoácidos , Ácidos Aminoisobutíricos
13.
New Phytol ; 237(3): 959-973, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285389

RESUMEN

Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.


Asunto(s)
Bacteriófagos , Prunus avium , Pseudomonas syringae/genética , Transferencia de Gen Horizontal , Bacteriófagos/genética , Genómica , Genoma Bacteriano , Enfermedades de las Plantas/genética
14.
Virol J ; 20(1): 174, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550759

RESUMEN

BACKGROUND: The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS: Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS: We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION: The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Serogrupo , Infecciones por Escherichia coli/microbiología , Antígenos O/genética , Antígenos O/metabolismo , Transferencia de Gen Horizontal , Filogenia , Escherichia coli Shiga-Toxigénica/genética , Heces/microbiología
15.
Environ Sci Technol ; 57(27): 9955-9964, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37336722

RESUMEN

Extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae has caused a global pandemic with high prevalence in livestock and poultry, which could disseminate into the environment and humans. To curb this risk, heat-based harmless treatment of livestock waste was carried out. However, some risks of the bacterial persistence have not been thoroughly assessed. This study demonstrated that antibiotic-resistant bacteria (ARB) could survive at 55 °C through dormancy, and simultaneously transformable extracellular antibiotic resistance genes (eARGs) would be released. The ESBL-producing pathogenic Escherichia coli CM1 from chicken manure could enter a dormant state at 55 °C and reactivate at 37 °C. Dormant CM1 had stronger ß-lactam resistance, which was associated with high expression of ß-lactamase genes and low expression of outer membrane porin genes. Resuscitated CM1 maintained its virulence expression and multidrug resistance and even had stronger cephalosporin resistance, which might be due to the ultra-low expression of the porin genes. Besides, heat at 55 °C promoted the release of eARGs, some of which possessed a certain nuclease stability and heat persistence, and even maintained their transformability to an Acinetobacter baylyi strain. Therefore, dormant multidrug-resistant pathogens from livestock waste will still pose a direct health risk to humans, while the resuscitation of dormant ARB and the transformation of released eARGs will jointly promote the proliferation of ARGs and the spread of antibiotic resistance.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Ganado/metabolismo , Ganado/microbiología , Calor , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , beta-Lactamasas/genética , Farmacorresistencia Microbiana/genética
16.
Environ Sci Technol ; 57(12): 4870-4879, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912846

RESUMEN

Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.


Asunto(s)
Farmacorresistencia Bacteriana , Integrones , Humanos , Integrones/genética , Farmacorresistencia Bacteriana/genética , Fusión Celular , Bacterias/genética , Reacción en Cadena de la Polimerasa , Antibacterianos/farmacología
17.
Environ Res ; 238(Pt 1): 117083, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690629

RESUMEN

Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.


Asunto(s)
Microfluídica , Neoplasias , Humanos , Transferencia de Gen Horizontal , Medicina de Precisión , Biopsia Líquida , ADN
18.
Adv Exp Med Biol ; 1398: 81-98, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717488

RESUMEN

Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.


Asunto(s)
Acuaporinas , Genoma , Filogenia , Acuaporinas/genética , Acuaporinas/química , Acuaporinas/metabolismo
19.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37112125

RESUMEN

Frequency estimation plays a critical role in vital sign monitoring. Methods based on Fourier transform and eigen-analysis are commonly adopted techniques for frequency estimation. Because of the nonstationary and time-varying characteristics of physiological processes, time-frequency analysis (TFA) is a feasible way to perform biomedical signal analysis. Among miscellaneous approaches, Hilbert-Huang transform (HHT) has been demonstrated to be a potential tool in biomedical applications. However, the problems of mode mixing, unnecessary redundant decomposition and boundary effect are the common deficits that occur during the procedure of empirical mode decomposition (EMD) or ensemble empirical mode decomposition (EEMD). The Gaussian average filtering decomposition (GAFD) technique has been shown to be appropriate in several biomedical scenarios and can be an alternative to EMD and EEMD. This research proposes the combination of GAFD and Hilbert transform that is termed the Hilbert-Gauss transform (HGT) to overcome the conventional drawbacks of HHT in TFA and frequency estimation. This new method is verified to be effective for the estimation of respiratory rate (RR) in finger photoplethysmography (PPG), wrist PPG and seismocardiogram (SCG). Compared with the ground truth values, the estimated RRs are evaluated to be of excellent reliability by intraclass correlation coefficient (ICC) and to be of high agreement by Bland-Altman analysis.


Asunto(s)
Algoritmos , Frecuencia Respiratoria , Reproducibilidad de los Resultados , Fotopletismografía/métodos , Distribución Normal , Procesamiento de Señales Asistido por Computador
20.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768888

RESUMEN

The MYB transcription factor superfamily includes key regulators of plant development and responses to environmental changes. The diversity of lifestyles and morphological characteristics exhibited by plants are potentially associated with the genomic dynamics of the MYB superfamily. With the release of the plant genomes, a comprehensive phylogenomic analysis of the MYB superfamily across Viridiplantae is allowed. The present study performed phylogenetic, phylogenomic, syntenic, horizontal gene transfer, and neo/sub-functionalization analysis of the MYB superfamily to explore the evolutionary contributions of MYB members to species diversification, trait formation, and environmental adaptation in 437 different plant species. We identified major changes in copy number variation and genomic context within subclades across lineages. Multiple MYB subclades showed highly conserved copy number patterns and synteny across flowering plants, whereas others were more dynamic and showed lineage-specific patterns. As examples of lineage-specific morphological divergence, we hypothesize that the gain of a MYB orthogroup associated with flower development and environmental responses and an orthogroup associated with auxin and wax biosynthesis in angiosperms were correlated with the emergence of flowering plants, unbiased neo-/sub-functionalization of gene duplicates contributed to environmental adaptation, and species-specific neo-/sub-functionalization contributed to phenotype divergence between species. Transposable element insertion in promoter regions may have facilitated the sub-/neo-functionalization of MYB genes and likely played a tissue-specific role contributing to sub-/neo-functionalization in plant root tissues. This study provides new insights into the evolutionary divergence of the MYB superfamily across major flowering and non-flowering lineages and emphasizes the need for lineage-/tissue-specific characterization to further understand trait variability and environmental adaptation.


Asunto(s)
Magnoliopsida , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Variaciones en el Número de Copia de ADN , Plantas/genética , Plantas/metabolismo , Genoma de Planta , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Evolución Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda