RESUMEN
Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.
Asunto(s)
Alucinógenos , Humanos , Alucinógenos/farmacología , Encéfalo , Transducción de SeñalRESUMEN
Mechanisms controlling the movement of the cerebrospinal fluid (CSF) toward peripheral nerves are poorly characterized. We found that, in addition to the foramina Magendie and Luschka for CSF flow toward the subarachnoid space and glymphatic system, CSF outflow could also occur along periaxonal spaces (termed "PAS pathway") from the spinal cord to peripheral organs, such as the liver and pancreas. When interrogating the latter route, we found that serotonin, acting through 5-HT2B receptors expressed in ependymocytes that line the central canal, triggered Ca2+ signals to induce polymerization of F-actin, a cytoskeletal protein, to reduce the volume of ependymal cells. This paralleled an increased rate of PAS-mediated CSF redistribution toward peripheral organs. In the liver, CSF was received by hepatic stellate cells. CSF efflux toward peripheral organs through the PAS pathway represents a mechanism dynamically connecting the nervous system with the periphery. Our findings are compatible with the traditional theory of CSF efflux into the glymphatic system to clear metabolic waste from the cerebral parenchyma. Thus, we extend the knowledge of CSF flow and expand the understanding of connectivity between the CNS and peripheral organs.
Asunto(s)
Líquido Cefalorraquídeo , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/fisiología , Animales , Hígado/metabolismo , Sistema Glinfático/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología , Ratones , Serotonina/líquido cefalorraquídeo , Serotonina/metabolismo , Actinas/metabolismo , Epéndimo/metabolismo , Espacio Subaracnoideo/metabolismo , Espacio Subaracnoideo/fisiología , Páncreas/metabolismoRESUMEN
The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) activity in depression is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate how hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviours, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons using behavioural analyses, microdialysis coupled with mass spectrometry and electrophysiological recordings. Moreover, 5-HT2CR modulated the neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction by influencing intracellular Ca2+ release, as determined by fibre photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON with the specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP abolished 5-HT2CR inhibition-induced depressive-like behaviours, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviours in the presence of a 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviours and highlight hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioural consequences of 5-HT2CR inhibition.
Asunto(s)
Depresión , Hipocampo , Óxido Nítrico Sintasa de Tipo I , Receptor de Serotonina 5-HT2C , Animales , Receptor de Serotonina 5-HT2C/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Depresión/metabolismo , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Estrés Psicológico/metabolismoRESUMEN
In rodents, cortical information is transferred to the substantia nigra pars reticulata (SNr) through motor and medial prefrontal (mPF) basal ganglia (BG) circuits implicated in motor and cognitive/motivational behaviors, respectively. The serotonergic 5-HT2A receptors are located in both of these neuronal networks, displaying topographical differences with a high expression in the associative/limbic territories, and a very low expression in the subthalamic nucleus. This study investigated whether the stimulation of 5-HT2A receptors could have a specific signature on the dynamic regulation of BG circuits, preferentially modulating the mPF information processing through trans-striatal pathways. We performed in vivo single-unit extracellular recordings to assess the effect of the 5-HT2A agonist TCB-2 on the spontaneous and cortically evoked activity of lateral and medial SNr neurons in male rats (involved in motor and mPF circuits, respectively). TCB-2 (50-200 µg/kg, i.v.) increased the basal firing rate and enhanced the cortically evoked inhibitory response of medial SNr neurons (transmission through the direct striato-nigral pathway). A prior administration of the preferential 5-HT2A receptor antagonist MDL11939 (200 µg/kg, i.v.) did not modify any electrophysiological parameter, but occluded TCB-2-induced effects. In animals treated with the 5-HT synthesis inhibitor pCPA (4-chloro-dl-phenylalanine methyl ester hydrochloride), TCB-2 failed to induce the above-mentioned effects, thus suggesting the contribution of endogenous 5-HT. However, the mobilization of 5-HT induced by the acute administration of fluoxetine (10 mg/kg, i.p.) did not mimic the effects triggered by TCB-2. Overall, these data suggest that 5-HT2A receptors have a preferential modulatory action on the dynamic regulation of BG circuitry.SIGNIFICANCE STATEMENT Motor and medial prefrontal (mPF) basal ganglia (BG) circuits play an important role in integrative brain functions like movement control or cognitive/motivational behavior, respectively. Although these neuronal networks express 5-HT2A receptors, the expression is higher in associative/limbic structures than in the motor ones. We show a topographical-dependent dissociation in the effects triggered by the 5HT2A agonist TCB-2, which specifically increases the medial substantia nigra pars reticulata neuron activity and has a preferential action on mPF information processing through the striato-nigral direct pathway. These are very likely to be 5-HT2A receptor-mediated effects that require mobilization of the endogenous 5-HT system. These findings provide evidence about the specific signature of 5-HT2A receptors on the dynamic regulation of BG circuits.
Asunto(s)
Receptor de Serotonina 5-HT2A , Serotonina , Ratas , Masculino , Animales , Serotonina/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Ratas Sprague-Dawley , Ganglios Basales/fisiología , Cuerpo Estriado/fisiología , Sustancia Negra/metabolismoRESUMEN
Despite extensive research efforts aimed at discovering novel antipsychotic compounds, a satisfactory pharmacological strategy for schizophrenia treatment remains elusive. All the currently available drugs act by modulating dopaminergic neurotransmission, leading to insufficient management of the negative and cognitive symptoms of the disorder. Due to these challenges, several attempts have been made to design agents with innovative, non-dopaminergic mechanisms of action. Consequently, a number of promising compounds are currently progressing through phases 2 and 3 of clinical trials. This review aims to examine the rationale behind the most promising of these strategies while simultaneously providing a comprehensive survey of study results. We describe the versatility behind the cholinergic neurotransmission modulation through the activation of M1 and M4 receptors, exemplified by the prospective drug candidate KarXT. Our discussion extends to the innovative approach of activating TAAR1 receptors via ulotaront, along with the promising outcomes of iclepertin, a GlyT-1 inhibitor with the potential to become the first treatment option for cognitive impairment associated with schizophrenia. Finally, we evaluate the 5-HT2A antagonist paradigm, assessing two recently developed serotonergic agents, pimavanserin and roluperidone. We present the latest advancements in developing novel solutions to the complex challenges posed by schizophrenia, offering an additional perspective on the diverse investigated drug candidates.
Asunto(s)
Antipsicóticos , Dopamina , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Dopamina/metabolismo , Antipsicóticos/uso terapéutico , Antipsicóticos/farmacología , Antipsicóticos/química , AnimalesRESUMEN
The knowledge that brain functional connectomes are unique and reliable has enabled behaviourally relevant inferences at a subject level. However, whether such "fingerprints" persist under altered states of consciousness is unknown. Ayahuasca is a potent serotonergic psychedelic which produces a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and functional connectome (FC) idiosyncrasy. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed FCs showed reduced idiosyncrasy, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FC motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example of how individualised connectivity markers can be used to trace a subject's FC across altered states of consciousness.
Asunto(s)
Banisteriopsis , Conectoma , Humanos , Encéfalo/fisiología , Estado de Conciencia , Imagen por Resonancia MagnéticaRESUMEN
N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.
Asunto(s)
Alucinógenos , Imagen por Resonancia Magnética , Humanos , Alucinógenos/farmacología , Adulto , Masculino , Femenino , Adulto Joven , Corteza Visual/efectos de los fármacos , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Distorsión de la Percepción/efectos de los fármacos , Distorsión de la Percepción/fisiología , N,N-Dimetiltriptamina/farmacología , Campos Visuales/efectos de los fármacos , Campos Visuales/fisiología , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología , Triptaminas/farmacología , Corteza Visual Primaria/efectos de los fármacos , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/diagnóstico por imagen , Mapeo Encefálico/métodosRESUMEN
Nelotanserin is a serotonin 2A and 2C (5-HT2A/2C) inverse agonist that was previously tested in the clinic for rapid-eye movement sleep behaviour disorder and psychosis in patients with Parkinson's disease (PD) dementia. Its effect on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia has however not been investigated. As 5-HT2A antagonism/inverse agonism is a validated approach to alleviate dyskinesia, we undertook the current study to evaluate the anti-dyskinetic potential of nelotanserin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Parkinsonism was induced in six common marmosets (Callithrix jacchus, three females and three males) that were then chronically treated with L-DOPA to induce dyskinesia. On experimental days, they were administered L-DOPA in combination with vehicle or nelotanserin (0.1, 0.3 and 1 mg/kg) subcutaneously, in a randomised fashion. Dyskinesia and parkinsonism were rated post hoc by a blinded observer. In comparison to vehicle, the addition of nelotanserin 0.3 and 1 mg/kg to L-DOPA diminished peak dose dyskinesia by 47% (P < 0.05) and 69% (P < 0.001). Nelotanserin 0.3 and 1 mg/kg also reduced the severity of global dyskinesia, by 40% (P < 0.01) and 55% (P < 0.001), when compared to vehicle. Nelotanserin 0.1 mg/kg did not alleviate peak dose or global dyskinesia severity. Nelotanserin had no impact on the anti-parkinsonian action of L-DOPA. Our results highlight that nelotanserin may represent an efficacious anti-dyskinetic drug and provide incremental evidence of the potential benefit of 5-HT2A/2C antagonism/inverse agonism for drug-induced dyskinesia in PD.
Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Compuestos de Fenilurea , Pirazoles , Animales , Femenino , Masculino , Antiparkinsonianos/efectos adversos , Callithrix , Agonismo Inverso de Drogas , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Levodopa/efectos adversos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , SerotoninaRESUMEN
Abnormalities in dopamine function might be related to psychiatric disorders such as schizophrenia. Even at the same concentration, dopamine exerts opposite effects on information processing in the prefrontal cortex depending on independent dopamine release modes known as tonic and phasic releases. This duality of dopamine prevents a blanket interpretation of the implications of dopamine abnormalities for diseases on the basis of absolute dopamine levels. Moreover, the mechanisms underlying the mode-specific dopamine abnormalities are not clearly understood. Here, I show that the two modes of dopamine release in the prefrontal cortex of a schizophrenia-like model are disrupted by different mechanisms. In the schizophrenia-like model established by perinatal exposure to inflammatory cytokine, epidermal growth factor, tonic release was enhanced and phasic release was decreased in the prefrontal cortex. I examined the activity of dopamine neurons in the ventral tegmental area (VTA), which sends dopamine projections to the prefrontal cortex, under anaesthesia. The activation of VTA dopamine neurons during excitatory stimulation (local application of glutamate or N-methyl-d-aspartic acid [NMDA]), which is associated with phasic activity, was blunt in this model. Dopaminergic neuronal activity in the resting state related to tonic release was increased by disinhibition of the dopamine neurons due to the impairment of 5HT2 (5HT2A) receptor-regulated GABAergic inputs. Moreover, chronic administration of risperidone ameliorated this disinhibition of dopaminergic neurons. These results provide an idea about the mechanism of dopamine disturbance in schizophrenia and may be informative in explaining the effects of atypical antipsychotics as distinct from those of typical drugs.
Asunto(s)
Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neuronas Dopaminérgicas/metabolismo , Serotonina/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Área Tegmental Ventral/metabolismo , Corteza Prefrontal/metabolismoRESUMEN
PURPOSE: The G-protein coupled receptor (GPCR) family, implicated in neurological disorders and drug targets, includes the sensitive serotonin receptor subtype, 5-HT2B. The influence of sodium ions on ligand binding at the receptor's allosteric region is being increasingly studied for its impact on receptor structure. METHODS: High-throughput virtual screening of three libraries, specifically the Asinex-GPCR library, which contains 8,532 compounds and FDA-approved (2466 compounds) and investigational compounds (2731)) against the modeled receptor [4IB4-5HT2BRM] using the standard agonist/antagonist (Ergotamine/Methysergide), as previously selected from our studies based on ADMET profiling, and further on basis of binding free energy a single compound - dihydroergotamine is chosen. RESULTS: This compound displayed strong interactions with the conserved active site. Ions influence ligand binding, with stronger interactions (3-H-bonds and 1-π-bond around 3.35 Å) observed when an agonist and ions are present. Ions entry is guided by conserved motifs in helices III, IV, and VII, which regulate the receptor. Dihydroergotamine, the selected drug, showed binding variance based on ions presence/absence, affecting amino acid residues in these motifs. DCCM and PCA confirmed the stabilization of ligands, with a greater correlation (â¼46.6%-PC1) observed with ions. Dihydroergotamine-modified interaction sites within the receptor necessary for activation, serving as a potential 5HT2BRM agonist. RDF analysis showed the sodium ions density around the active site during dihydroergotamine binding. CONCLUSION: Our study provides insights into sodium ion mobility's role in controlling ligand binding affinity in 5HT2BR, offering therapeutic development insights.
Asunto(s)
Descubrimiento de Drogas , Unión Proteica , Receptor de Serotonina 5-HT2B , Sodio , Ligandos , Receptor de Serotonina 5-HT2B/metabolismo , Receptor de Serotonina 5-HT2B/química , Humanos , Sodio/metabolismo , Sodio/química , Desarrollo de Medicamentos , Simulación del Acoplamiento Molecular , Sitios de Unión , Sitio Alostérico , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Dominio Catalítico/efectos de los fármacosRESUMEN
Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.
Asunto(s)
Tronco Encefálico , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Receptor de Serotonina 5-HT2C , Animales , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Ratas , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Indoles/farmacología , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Ratas Sprague-Dawley , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Aminopiridinas , TiofenosRESUMEN
Neuroinflammation-related locomotor deficits and neuropathic pain are expected outcomes of spinal cord injury (SCI). The atypical antidepressant mirtazapine has exhibited potential neuroprotective and anti-inflammatory effects. This research aims to investigate the impacts of mirtazapine on post-SCI neuropathic pain and locomotor recovery, with a particular focus on neuroinflammation. The study utilized 30 male Wistar rats divided into five groups: Sham, SCI with vehicle treatment, and SCI administered with mirtazapine (3, 10, and 30 mg/kg/day, ip, for one week). Locomotor activity was assessed using the Basso, Beattie, and Bresnahan (BBB) scale. Mechanical, thermal, and cold allodynia were assessed using von-Frey filaments, tail flick latency, and the acetone test, respectively. ELISA was utilized to measure cytokines, while Western blotting was used to determine TRPV1 channel, 5-HT2A receptor, NLRP3, and iNOS expression. Histopathological analyses were also examined, including hematoxylin and eosin (H&E) and Luxol fast blue (LFB) staining. Mirtazapine (10 and 30 mg/kg/day) significantly improved locomotor recovery according to BBB score. It attenuated mechanical, thermal, and cold allodynia post-SCI. Moreover, it decreased pro-inflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-18, while increasing anti-inflammatory cytokine IL-4 and IL-10. Furthermore, it downregulated iNOS, NLRP3, and TRPV1 expression and upregulated the 5-HT2A receptor. H&E and LFB staining further revealed attenuated tissue damage and decreased demyelination. Our findings suggest that mirtazapine can alleviate neuropathic pain and reinforce locomotor recovery post-SCI by modulating neuroinflammatory responses, NLRP3, iNOS, TRPV1 channel, and 5-HT2A receptor expression.
Asunto(s)
Locomoción , Mirtazapina , Neuralgia , Ratas Wistar , Traumatismos de la Médula Espinal , Animales , Mirtazapina/uso terapéutico , Mirtazapina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuralgia/etiología , Locomoción/efectos de los fármacos , Ratas , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/etiología , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéuticoRESUMEN
Hallucinogenic 5-HT2A receptor (5-HT2AR) agonists-induced head-twitch response (HTR) is regulated by Gs signaling pathway. Formation of heterodimers between 5-HT2AR and metabotropic glutamate mGlu2 receptor (mGluR2) is essential for the hallucinogenic 5-HT2AR agonist-induced HTR. In order to investigate the effects of mGluR2 agonists and inverse agonists on hallucinogenic 5-HT2AR agonists DOM-induced HTR, C57BL/6 mice were pretreated with mGluR2 agonists (LY379268, LY354740, LY404039) or the inverse agonist LY341495, and the HTR was manually counted after administering DOM immediately. IP-One (IP1) HTRF assay and cAMP assay were performed to evaluate the effect of LY341495 or LY354740 on DOM-induced Gq and Gs activation in Human Embryonic Kidney-293 (HEK-293) T-type cells co-expressing 5-HT2AR and mGluR2. The results showed that DOM-induced HTR in mice was dose-dependently inhibited by LY379268, LY354740, and LY404039, while it was dose-dependently enhanced by LY341495. Moreover, LY341495 reversed the inhibitory effect of LY354740 on DOM-induced HTR. In HEK-293T cells co-expressing 5-HT2AR and mGluR2, DOM-induced cAMP level was decreased by LY354740 and increased by LY341495, but DOM-induced IP1 level was not regulated by LY354740 or LY341495. The regulation of DOM-induced HTR by mGluR2 agonists and inverse agonists is closely related to 5-HT2AR-mediated Gs signaling pathway. In HEK-293T cells co-expressing 5-HT2AR and mGluR2 A677S/A681P/A685G mutant (mGluR2 3 A mutant), DOM-induced cAMP level was not regulated by LY354740, but was significantly enhanced by LY341495. The 5-HT2AR/mGluR2 heterodimers is critical for DOM-induced HTR and cAMP level, both of which are inhibited by mGluR2 agonists and enhanced by mGluR2 inverse agonists.
Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Bicíclicos con Puentes , Óxidos S-Cíclicos , Agonismo Inverso de Drogas , Receptores de Glutamato Metabotrópico , Serotonina , Ratones , Humanos , Animales , Células HEK293 , Ratones Endogámicos C57BL , Transducción de SeñalRESUMEN
INTRODUCTION: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.
Asunto(s)
Pollos , Metabolismo Energético , Conducta Alimentaria , Receptor de Serotonina 5-HT2C , Serotonina , Animales , Metabolismo Energético/efectos de los fármacos , Receptor de Serotonina 5-HT2C/metabolismo , Serotonina/metabolismo , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Hormonas Hipotalámicas/metabolismo , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hiperlipidemias/metabolismo , Hiperlipidemias/inducido químicamenteRESUMEN
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT2B receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT2B receptor. To develop the first PET radiotracer for the 5-HT2B receptor, RS-127445, a well-known 5-HT2B receptor antagonist, was labeled with fluorine-18. [18F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [18F]RS-127445. However, competition experiments and in vitro autoradiography showed high non-specific binding, especially to brain white matter.
Asunto(s)
Encéfalo , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Receptor de Serotonina 5-HT2B , Animales , Ratas , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Radiofármacos/síntesis química , Radiofármacos/química , Receptor de Serotonina 5-HT2B/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/síntesis química , Antagonistas del Receptor de Serotonina 5-HT2/química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Estructura Molecular , FluorobencenosRESUMEN
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Asunto(s)
Longevidad , Serotonina , Sistema Nervioso Central , Transducción de SeñalRESUMEN
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, associated with substantial burden and large economical costs. Notwithstanding various conventional antidepressant treatment options, a large portion of depressed people (ca. 30%) fails to respond to first-line treatment, resulting in treatment-resistant depression (TRD). Although non-response to multiple antidepressant interventions is a common outcome, a consensus definition of TRD is not yet available. In practice, TRD is applied when two or more successive treatments with different antidepressants are not working. The last decade's intense research into new medicines for TRD has led to two developments, using typical or serotonergic (psilocybin, ayahuasca) and atypical (glutamatergic) psychedelics (ketamine, esketamine). Both approaches, although via different entrance mechanism, exhibit a fast onset but also long-lasting antidepressant effect far beyond the biological presence of the drug in the body, strongly indicating that downstream mechanisms activated by signaling cascades in the brain are involved. The present chapter describes the clinical development of psilocybin and esketamine for TRD and discusses the problems involved in the use of a proper placebo because of the psychotomimetic (psilocybin) or dissociative (ketamine) effects that interfere with performing "blind" studies. Nevertheless, intranasal esketamine was developed and approved for TRD, whereas psilocybin has shown positive results. Adverse effects and tolerability of both drugs in the dose ranges used are generally acceptable. The emergence of anti-TRD medicines for treatment of a very severe disease is a breakthrough in psychiatry.
Asunto(s)
Antidepresivos , Trastorno Depresivo Resistente al Tratamiento , Alucinógenos , Ketamina , Psilocibina , Humanos , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Alucinógenos/uso terapéutico , Alucinógenos/efectos adversos , Alucinógenos/farmacología , Ketamina/uso terapéutico , Ketamina/efectos adversos , Psilocibina/uso terapéutico , Psilocibina/efectos adversos , Psilocibina/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/efectos adversos , Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Resultado del TratamientoRESUMEN
Clinical studies have reported that the psychedelic lysergic acid diethylamide (LSD) enhances empathy and social behavior (SB) in humans, but its mechanism of action remains elusive. Using a multidisciplinary approach including in vivo electrophysiology, optogenetics, behavioral paradigms, and molecular biology, the effects of LSD on SB and glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) were studied in male mice. Acute LSD (30 µg/kg) injection failed to increase SB. However, repeated LSD (30 µg/kg, once a day, for 7 days) administration promotes SB, without eliciting antidepressant/anxiolytic-like effects. Optogenetic inhibition of mPFC excitatory neurons dramatically inhibits social interaction and nullifies the prosocial effect of LSD. LSD potentiates the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and 5-HT2A, but not N-methyl-D-aspartate (NMDA) and 5-HT1A, synaptic responses in the mPFC and increases the phosphorylation of the serine-threonine protein kinases Akt and mTOR. In conditional knockout mice lacking Raptor (one of the structural components of the mTORC1 complex) in excitatory glutamatergic neurons (Raptorf/f:Camk2alpha-Cre), the prosocial effects of LSD and the potentiation of 5-HT2A/AMPA synaptic responses were nullified, demonstrating that LSD requires the integrity of mTORC1 in excitatory neurons to promote SB. Conversely, in knockout mice lacking Raptor in GABAergic neurons of the mPFC (Raptorf/f:Gad2-Cre), LSD promotes SB. These results indicate that LSD selectively enhances SB by potentiating mPFC excitatory transmission through 5-HT2A/AMPA receptors and mTOR signaling. The activation of 5-HT2A/AMPA/mTORC1 in the mPFC by psychedelic drugs should be explored for the treatment of mental diseases with SB impairments such as autism spectrum disorder and social anxiety disorder.
Asunto(s)
Conducta Animal/efectos de los fármacos , Dietilamida del Ácido Lisérgico/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Conducta Social , Transmisión Sináptica/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Fosforilación/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.
Asunto(s)
Prosencéfalo , ARN Mensajero , Receptor de Serotonina 5-HT2A , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Ratas , Femenino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/genética , Prosencéfalo/metabolismo , Empatía/fisiología , Factores de Edad , Caracteres Sexuales , Ratas Sprague-Dawley , Conducta Animal/fisiología , Amígdala del Cerebelo/metabolismoRESUMEN
To explore the antidepressant effects and targets of atractylenolide I (ATR) through a network pharmacological approach. Relevant targets of ATR and depression analyzed by network pharmacology were scored (identifying 5-HT2A targets). Through elevated plus maze, open field, tail suspension, and forced swimming tests, the behavioral changes of mice with depression (chronic unpredictable mild stress [CUMS]) were examined, and the levels of neurotransmitters including serotonin, dopamine, and norepinephrine (5-HT, DA, and NE) were determined. The binding of ATR to 5-HT2A was verified by small molecular-protein docking. ATR improved the behaviors of CUMS mice, elevated their levels of neurotransmitters 5-HT, DA, and NE, and exerted a protective effect on their nerve cell injury. After 5-HT2A knockout, ATR failed to further improve the CUMS behaviors. According to the results of small molecular-protein docking and network pharmacological analysis, ATR acted as an inhibitor by binding to 5-HT2A. ATR can improve the behaviors and modulate the neurotransmitters of CUMS mice by targeting 5-HT2A.