Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Annu Rev Biochem ; 87: 159-185, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29589959

RESUMEN

Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.


Asunto(s)
Flavinas/metabolismo , Halogenación/genética , Halogenación/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Biocatálisis , Dominio Catalítico/genética , Evolución Molecular Dirigida , Diseño de Fármacos , Estabilidad de Enzimas/genética , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Mutagénesis , Oxidorreductasas/química , Especificidad por Sustrato
2.
J Biol Chem ; 300(4): 107210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519030

RESUMEN

Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.


Asunto(s)
Proteínas Bacterianas , Flavinas , Oxidorreductasas , Streptomyces , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Flavinas/metabolismo , Flavinas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Streptomyces/enzimología , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Halogenación , Bromuros/química , Bromuros/metabolismo , Triptófano/metabolismo , Triptófano/química , Sitios de Unión , Cloruros/metabolismo , Cloruros/química
3.
Chembiochem ; 25(1): e202300700, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917145

RESUMEN

Flavin-dependent halogenases allow halogenation of electron-rich aromatic compounds under mild reaction conditions even at electronically unfavored positions with high regioselectivity. In order to expand the application of halogenases, the enzymes need to be improved in terms of stability and efficiency. A previous study with the tryptophan 6-halogenase Thal demonstrated that thermostable Thal variants tend to form dimers in solution while the wild type is present as a monomer. Based on this a dimeric Thal variant was generated that is covalently linked by disulfide bonds. Introducing two cysteine residues at the dimer interface resulted in the variant Thal CC with significantly increased thermostability (▵T50 =15.7 K) and stability over time at elevated temperature compared to the wild type. By introducing the homologous mutations into the tryptophan 5-halogenase PyrH, we were able to show that the stabilization by covalent dimerization can also be transferred to other halogenases. Moreover, it was possible to further increase the thermostability of PyrH by inserting cysteine mutations at alternative sites of the dimer interface.


Asunto(s)
Cisteína , Triptófano , Triptófano/metabolismo , Halogenación , Flavinas/metabolismo
4.
Chembiochem ; : e202400366, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958600

RESUMEN

Genetic Code Expansion technology offers significant potential in incorporating noncanonical amino acids into proteins at precise locations, allowing for the modulation of protein structures and functions. However, this technology is often limited by the need for costly and challenging-to-synthesize external noncanonical amino acid sources. In this study, we address this limitation by developing autonomous cells capable of biosynthesizing halogenated tryptophan derivatives and introducing them into proteins using Genetic Code Expansion technology. By utilizing inexpensive halide salts and different halogenases, we successfully achieve the selective biosynthesis of 6-chloro-tryptophan, 7-chloro-tryptophan, 6-bromo-tryptophan, and 7-bromo-tryptophan. These derivatives are introduced at specific positions with corresponding bioorthogonal aminoacyl-tRNA synthetase/tRNA pairs in response to the amber codon. Following optimization, we demonstrate the robust expression of proteins containing halogenated tryptophan residues in cells with the ability to biosynthesize these tryptophan derivatives. This study establishes a versatile platform for engineering proteins with various halogenated tryptophans.

5.
Metab Eng ; 81: 100-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000548

RESUMEN

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Asunto(s)
Escherichia coli , Carmin de Índigo , Carmin de Índigo/metabolismo , Escherichia coli/metabolismo , Indoles/metabolismo , Oxigenasas de Función Mixta/metabolismo
6.
Angew Chem Int Ed Engl ; 63(5): e202314961, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38009455

RESUMEN

Bio-orthogonal reactions for modification of proteins and unprotected peptides are of high value in chemical biology. The combination of enzymatic halogenation with transition metal-catalyzed cross-coupling provides a feasible approach for the modification of proteins and unprotected peptides. By a semirational protein engineering approach, variants of the tryptophan 6-halogenase Thal were identified that enable efficient bromination of peptides with a C-terminal tryptophan residue. The substrate scope was explored using di-, tri-, and tetrapeptide arrays, leading to the identification of an optimized peptide tag we named BromoTrp tag. This tag was introduced into three model proteins. Preparative scale post-translational bromination was possible with only a single cultivation and purification step using the brominating E. coli coexpression system Brocoli. Palladium-catalyzed Suzuki-Miyaura cross-coupling of the bromoarene was achieved with Pd nanoparticle catalysts at 37 °C, highlighting the rich potential of this strategy for bio-orthogonal functionalization and conjugation.


Asunto(s)
Halogenación , Triptófano , Triptófano/química , Escherichia coli/metabolismo , Péptidos/química , Proteínas/metabolismo
7.
Chembiochem ; 24(1): e202200569, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259362

RESUMEN

The late-stage site-selective derivatisation of peptides has many potential applications in structure-activity relationship studies and postsynthetic modification or conjugation of bioactive compounds. The development of orthogonal methods for C-H functionalisation is crucial for such peptide derivatisation. Among them, biocatalytic methods are increasingly attracting attention. Tryptophan halogenases emerged as valuable catalysts to functionalise tryptophan (Trp), while direct enzyme-catalysed halogenation of synthetic peptides is yet unprecedented. Here, it is reported that the Trp 6-halogenase Thal accepts a wide range of amides and peptides containing a Trp moiety. Increasing the sequence length and reaction optimisation made bromination of pentapeptides feasible with good turnovers and a broad sequence scope, while regioselectivity turned out to be sequence dependent. Comparison of X-ray single crystal structures of Thal in complex with d-Trp and a dipeptide revealed a significantly altered binding mode for the peptide. The viability of this bioorthogonal approach was exemplified by halogenation of a cyclic RGD peptide.


Asunto(s)
Halogenación , Triptófano , Triptófano/metabolismo , Péptidos/metabolismo , Relación Estructura-Actividad , Catálisis
8.
Appl Microbiol Biotechnol ; 107(15): 4873-4885, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354265

RESUMEN

Efficient FAD/FADH2 regeneration is vital for enzymatic biocatalysis and metabolic pathway optimization. Here, we constructed an efficient and simple FAD/FADH2 regeneration system through a combination of L-amino acid deaminase (L-AAD) and halogenase (CombiAADHa), which was applied for catalyzing the conversion of an L-amino acid to halide and an α-keto acid. For cell-free biotransformation, the optimal activity ratio of L-AAD and halogenase was set between 1:50 and 1:60. Within 6 h, 170 mg/L of 7-chloro-tryptophan (7-Cl-Trp) and 193 mg/L of indole pyruvic acid (IPA) were synthesized in the selected mono-amino acid system. For whole-cell biotransformation, 7-Cl-Trp and IPA synthesis was enhanced by 15% (from 96 to 110 mg/L) and 12% (from 115 to 129 mg/L), respectively, through expression fine-tuning and the strengthening of FAD/FADH2 supply. Finally, ultrasound treatment was applied to improve membrane permeability and adjust the activity ratio, resulting in 1.6-and 1.4-fold higher 7-Cl-Trp and IPA yields. The products were then purified. This system could also be applied to the synthesis of other halides and α-keto acids. KEY POINTS: • In this study, a whole cell FAD/FADH2 regeneration system co-expressing l-AAD and halogenase was constructed • This study found that the activity and ratio of enzyme and the concentration of cofactors had a significant effect on the catalytic process for the efficient co-production of 7-chlorotryptophan and indole pyruvate.


Asunto(s)
Ácido Pirúvico , Triptófano , Triptófano/metabolismo , Aminoácidos/metabolismo , Indoles/metabolismo , Cetoácidos/metabolismo , Regeneración
9.
Chirality ; 35(8): 452-460, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36916449

RESUMEN

In nature, flavin-dependent halogenases (FDHs) catalyze site-selective chlorination and bromination of aromatic natural products. This ability has led to extensive efforts to engineer FDHs for selective chlorination, bromination, and iodination of electron rich aromatic compounds. On the other hand, FDHs are unique among halogenases and haloperoxidases that exhibit catalyst-controlled site selectivity in that no examples of enantioselective FDH catalysis in natural product biosynthesis have been characterized. Over the past several years, our group has established that FDHs can catalyze enantioselective reactions involving desymmetrization, atroposelective halogenation, and halocyclization. Achieving high activity and selectivity for these reactions has required extensive mutagenesis and mitigation of problems resulting from hypohalous acid generated during FDH catalysis. The single-component flavin reductase/FDH AetF is unique among the wild type enzyme we have studied in that it provides high activity and selectivity toward several asymmetric transformations. These results highlight the ability of FDH active sites to tolerate different substrate topologies and suggest that they could be useful for a broad range of oxidative halogenations.


Asunto(s)
Flavinas , Halogenación , Estereoisomerismo , Catálisis , Dominio Catalítico , Flavinas/química , Flavinas/metabolismo
10.
Chimia (Aarau) ; 77(3): 116-121, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38047813

RESUMEN

The combinatorial composition of proteins has triggered the application of machine learning in enzyme engineering. By predicting how protein sequence encodes function, researchers aim to leverage machine learning models to select a reduced number of optimized sequences for laboratory measurement with the aim to lower costs and shorten timelines of enzyme engineering campaigns. In this review, we will highlight successful algorithm-aided protein engineering examples, including work carried out within the NCCR Catalysis. In this context, we will discuss the underlying computational methods developed to improve enzyme properties such as enantioselectivity, regioselectivity, activity, and stability. Considering the rapid maturing of computational techniques, we expect that their continued application in enzyme engineering campaigns will be key to deliver additional powerful biocatalysts for sustainable chemical synthesis.


Asunto(s)
Algoritmos , Ingeniería , Catálisis , Recolección de Datos , Aprendizaje Automático
11.
J Biol Chem ; 296: 100068, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465708

RESUMEN

Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.


Asunto(s)
Flavinas/metabolismo , Oxidorreductasas/metabolismo , Catálisis , Cristalografía por Rayos X , Flavina-Adenina Dinucleótido/metabolismo , Halogenación , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica
12.
Appl Environ Microbiol ; 88(9): e0249721, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35435717

RESUMEN

Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical ß-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.


Asunto(s)
Halogenación , Ácidos Cetoglutáricos , Proteínas Portadoras , Compuestos Ferrosos , Halógenos , Hierro/química , Simulación del Acoplamiento Molecular , Nucleótidos
13.
Appl Environ Microbiol ; 88(17): e0080622, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36000868

RESUMEN

Albofungin, a hexacyclic aromatic natural product, exhibits broad-spectrum antimicrobial activity. Its biosynthesis, regulation, and resistance remain elusive. Here, we report the albofungin (abf) biosynthetic gene cluster (BGC) from its producing strain Streptomyces tumemacerans JCM5050. The nascent abf BGC encodes 70 putative genes, including regulators, transporters, type II polyketide synthases (PKSs), oxidoreductase, and tailoring enzymes. To validate the intactness and functionality of the BGC, we developed an Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, whereby the abf BGC was integrated into the genome of a nonproducing host via heterologous conjugation, wherefrom albofungin can be produced, confirming that the BGC is in effect. We then delimited the boundaries of the BGC by means of in vitro CRISPR-Cas9 DNA editing, concluding a minimal but essential 60-kb abf BGC ranging from orfL to abf58. The orfA gene encoding a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase was examined and is capable of transforming albofungin to halogen-substituted congeners in vivo and in vitro. The orfL gene encoding a transporter was examined in vivo. The presence/absence of orfA or orfL demonstrated that the MIC of albofungin is subject to alteration when an extracellular polysaccharide intercellular adhesin was formed. Despite that halogenation of albofungin somewhat increases binding affinity to transglycosylase (TGase), albofungin with/without a halogen substituent manifests similar in vitro antimicrobial activity. Halogenation, however, limits overall dissemination and effectiveness given a high secretion rate, weak membrane permeability, and high hydrophobicity of the resulting products, whereby the functions of orfA and orfL are correlated with drug detoxification/resistance for the first time. IMPORTANCE Albofungin, a natural product produced from Streptomycetes, exhibits bioactivities against bacteria, fungi, and tumor cells. The biosynthetic logic, regulations, and resistance of albofungin remain yet to be addressed. Herein, the minimal albofungin (abf) biosynthetic gene cluster (BGC) from the producing strain Streptomyces tumemacerans JCM5050 was precisely delimited using the Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, of which the gene essentiality was established in vivo and in vitro. Next, we characterized two genes orfA and orfL encoded in the abf BGC, which act as a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase and an albofungin-congeners transporter, respectively. While each testing microorganism exhibited different sensitivities to albofungins, the MIC values of albofungins against testing strains with/without orfA and/or orfL were subject to considerable changes. Halogen-substituted albofungins mediated by OrfA manifested overall compromised dissemination and effectiveness, revealing for the first time that two functionally distinct proteins OrfA and OrfL are associated together, exerting a novel "belt and braces" mechanism in antimicrobial detoxification/resistance.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Streptomyces , Antiinfecciosos/metabolismo , Productos Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Halogenación , Halógenos/metabolismo , Familia de Multigenes , Streptomyces/genética , Xantenos
14.
Biotechnol Bioeng ; 119(10): 2938-2949, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35876239

RESUMEN

6-Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin-derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site-specific bromination and oxidation at the indole ring. Here, we present an efficient 6BrIR production strategy in Escherichia coli by using four enzymes, that is, tryptophan 6-halogenase fused with flavin reductase Fre (Fre-L3-SttH), tryptophanase (TnaA), toluene 4-monooxygenase (PmT4MO), and flavin-containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6-bromoindole with 45% yield to produce 6-bromo-2-oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr, and oxygen.


Asunto(s)
Escherichia coli , Triptófano , Escherichia coli/metabolismo , Indoles , Oxígeno/metabolismo , Triptófano/metabolismo
15.
Angew Chem Int Ed Engl ; 61(51): e202214610, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36282507

RESUMEN

Flavin-dependent halogenases (FDHs) natively catalyze selective halogenation of electron rich aromatic and enolate groups. Nearly all FDHs reported to date require a separate flavin reductase to supply them with FADH2 , which complicates biocatalysis applications. In this study, we establish that the single component flavin reductase/flavin dependent halogenase AetF catalyzes halogenation of a diverse set of substrates using a commercially available glucose dehydrogenase to drive its halogenase activity. High site selectivity, activity on relatively unactivated substrates, and high enantioselectivity for atroposelective bromination and bromolactonization was demonstrated. Site-selective iodination and enantioselective cycloiodoetherification was also possible using AetF. The substrate and reaction scope of AetF suggest that it has the potential to greatly improve the utility of biocatalytic halogenation.


Asunto(s)
Alquenos , Oxidorreductasas , Oxidorreductasas/metabolismo , Halogenación , Flavinas/metabolismo , Biocatálisis
16.
Chembiochem ; 22(18): 2791-2798, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34240527

RESUMEN

Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.


Asunto(s)
Proteínas Bacterianas/metabolismo , Indoles/química , Oxidorreductasas/metabolismo , Triptófano/metabolismo , Actinobacteria/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biocatálisis , Halogenación , Indoles/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas/química , Oxidorreductasas/genética , Especificidad por Sustrato , Triptófano/química
17.
Chemistry ; 27(17): 5404-5411, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33496351

RESUMEN

Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C-H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6'-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.


Asunto(s)
Halogenación , Triptófano , Biocatálisis , Flavinas , Halógenos , Triptófano/metabolismo
18.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684801

RESUMEN

Halogenation often improves the bioactive properties of natural products and is used in pharmaceutical research for the generation of new potential drug leads. High regio- and stereospecificity, simple reaction conditions and straightforward downstream processing are the main advantages of halogenation using enzymatic biocatalysts compared to chemical synthetic approaches. The identification of new promiscuous halogenases for the modification of various natural products is of great interest in modern drug discovery. In this paper, we report the identification of a new promiscuous FAD-dependent halogenase, DklH, from Frankia alni ACN14a. The identified halogenase readily modifies various flavonoid compounds, including those with well-studied biological activities. This halogenase has been demonstrated to modify not only flavones and isoflavones, but also flavonols, flavanones and flavanonols. The structural requirements for DklH substrate recognition were determined using a feeding approach. The homology model of DklH and the mechanism of substrate recognition are also proposed in this paper.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavonoides/metabolismo , Halogenación , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Descubrimiento de Drogas , Flavonoides/química , Frankia/enzimología , Frankia/genética , Genes Bacterianos , Simulación del Acoplamiento Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
19.
J Biol Chem ; 294(7): 2529-2542, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30559288

RESUMEN

Flavin-dependent halogenases increasingly attract attention as biocatalysts in organic synthesis, facilitating environmentally friendly halogenation strategies that require only FADH2, oxygen, and halide salts. Different flavin-dependent tryptophan halogenases regioselectively chlorinate or brominate trypto-phan's indole moiety at C5, C6, or C7. Here, we present the first substrate-bound structure of a tryptophan 6-halogenase, namely Thal, also known as ThdH, from the bacterium Streptomyces albogriseolus at 2.55 Šresolution. The structure revealed that the C6 of tryptophan is positioned next to the ϵ-amino group of a conserved lysine, confirming the hypothesis that proximity to the catalytic residue determines the site of electrophilic aromatic substitution. Although Thal is more similar in sequence and structure to the tryptophan 7-halogenase RebH than to the tryptophan 5-halogenase PyrH, the indole binding pose in the Thal active site more closely resembled that of PyrH than that of RebH. The difference in indole orientation between Thal and RebH appeared to be largely governed by residues positioning the Trp backbone atoms. The sequences of Thal and RebH lining the substrate binding site differ in only few residues. Therefore, we exchanged five amino acids in the Thal active site with the corresponding counterparts in RebH, generating the quintuple variant Thal-RebH5. Overall conversion of l-Trp by the Thal-RebH5 variant resembled that of WT Thal, but its regioselectivity of chlorination and bromination was almost completely switched from C6 to C7 as in RebH. We conclude that structure-based protein engineering with targeted substitution of a few residues is an efficient approach to tailoring flavin-dependent halogenases.


Asunto(s)
Proteínas Bacterianas/química , Oxidorreductasas/química , Streptomyces/enzimología , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Oxidorreductasas/genética , Streptomyces/genética , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Chemistry ; 26(33): 7336-7345, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31968136

RESUMEN

Freestanding Fe/α-ketoglutarate-dependent halogenases are oxidoreductases that catalyze the installation of halogen atoms into unactivated sp3 -hybridized carbon centers with high stereo- and regioselectivity. Since their discovery in 2014, a small number of indole alkaloid and amino acid halogenases have been identified and characterized. First enzyme engineering examples suggest that the accessible substrate range of these enzymes may be expanded through the use of rational enzyme design and directed evolution. Structural investigations of non-heme iron halogenases acting on freestanding as well as tethered substrates are beginning to inform about the principles of the underlying halogenation mechanism.


Asunto(s)
Hidrolasas/química , Ácidos Cetoglutáricos/química , Oxidorreductasas/química , Biocatálisis , Halogenación , Hidrolasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxidorreductasas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda