Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Evol Biol ; 37(2): 162-170, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366251

RESUMEN

Host-parasite coevolution is mediated by genetic interactions between the antagonists and may lead to reciprocal adaptation. In the black bean aphid, Aphis fabae fabae, resistance to parasitoids can be conferred by the heritable bacterial endosymbiont Hamiltonella defensa. H. defensa has been shown to be variably protective against different parasitoid species, and different genotypes of the black bean aphid's main parasitoid Lysiphlebus fabarum. However, these results were obtained using haphazard combinations of laboratory-reared insect lines with different origins, making it unclear how representative they are of natural, locally (co)adapted communities. We therefore comprehensively sampled the parasitoids of a natural A. f. fabae population and measured the ability of the five most abundant species to parasitize aphids carrying the locally prevalent H. defensa haplotypes. H. defensa provided resistance only against the dominant parasitoid L. fabarum (70% of all parasitoids), but not against less abundant parasitoids, and resistance to L. fabarum acted in a genotype-specific manner (G × G interactions between H. defensa and L. fabarum). These results confirm that strong species- and genotype-specificity of symbiont-conferred resistance is indeed a hallmark of wild A. f. fabae populations, and they are consistent with symbiont-mediated adaptation of aphids to the parasitoids posing the highest risk.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Áfidos/microbiología , Avispas/genética , Interacciones Huésped-Parásitos/genética , Simbiosis , Enterobacteriaceae
2.
Bull Entomol Res ; 114(2): 254-259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444236

RESUMEN

Peach-potato aphids, Myzus persicae Sulzer (Hemiptera:Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts. In recent years greater emphasis has been placed on developing alternative pest management strategies, including the increased use of natural enemies such as parasitoids wasps. For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can potentially disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA where endosymbiont infection frequencies range form 0-2%, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities (endosymbionts present in over 50% of aphid populations).


Asunto(s)
Áfidos , Simbiosis , Áfidos/microbiología , Animales , Alemania , Productos Agrícolas/microbiología , Brassica rapa/microbiología
3.
Mol Ecol ; 32(4): 936-950, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458425

RESUMEN

Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.


Asunto(s)
Áfidos , Virus ARN , Avispas , Animales , Áfidos/genética , Simbiosis/genética , Enterobacteriaceae/genética , Virus ARN/genética
4.
Mol Ecol ; 32(14): 4063-4077, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160764

RESUMEN

Parasite-mediated selection can rapidly drive up resistance levels in host populations, but fixation of resistance traits may be prevented by costs of resistance. Black bean aphids (Aphis fabae) benefit from increased resistance to parasitoids when carrying the defensive bacterial endosymbiont Hamiltonella defensa. However, due to fitness costs that come with symbiont infection, symbiont-conferred resistance may result in either a net benefit or a net cost to the aphid host, depending on parasitoid presence as well as on the general ecological context. Balancing selection may therefore explain why in natural aphid populations, H. defensa is often found at intermediate frequencies. Here we present a 2-year field study where we set out to look for signatures of balancing selection in natural aphid populations. We collected temporally well-resolved data on the prevalence of H. defensa in A. f. fabae and estimated the risk imposed by parasitoids using sentinel hosts. Despite a marked and consistent early-summer peak in parasitism risk, and significant changes in symbiont prevalence over time, we found just a weak correlation between parasitism risk and H. defensa frequency dynamics. H. defensa prevalence in the populations under study was, in fact, better explained by the number of heat days that previous aphid generations were exposed to. Our study grants an unprecedentedly well-resolved insight into the dynamics of endosymbiont and parasitoid communities of A. f. fabae populations, and it adds to a growing body of empirical evidence suggesting that not only parasitism risk, but rather multifarious selection is shaping H. defensa prevalence in the wild.


Asunto(s)
Áfidos , Avispas , Animales , Simbiosis , Estaciones del Año , Áfidos/microbiología , Enterobacteriaceae
5.
Proc Biol Sci ; 289(1985): 20221269, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36285493

RESUMEN

Facultative symbionts are common in insects and can provide their hosts with significant adaptations. Yet we still have a limited understanding of what shapes their distributions, such as why particular symbiont strains are common in some host species yet absent in others. To address this question, we genotyped the defensive symbiont Hamiltonella defensa in 26 aphid species that commonly carry this microbe. We found that Hamiltonella strains were strongly associated with specific aphid species and that strains found in one host species rarely occurred in others. To explain these associations, we reciprocally transferred the Hamiltonella strains of three aphid species, Acyrthosiphon pisum, Macrosiphoniella artemisiae and Macrosiphum euphorbiae, and assessed the impact of Hamiltonella strain on: the stability of the symbiosis, aphid fecundity and parasitoid resistance. We demonstrate that the Hamiltonella strains found in nature are locally adapted to specific aphid hosts, and their ecology: aphids tend to carry Hamiltonella strains that are efficiently transmitted to their offspring, non-lethal, and that provide strong protection against their dominant parasitoid species. Our results suggest that facultative symbiont distributions are shaped by selection from natural enemies, and the host itself, resulting in locally adapted symbioses that provide significant benefits against prevailing natural enemies.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Enterobacteriaceae/genética , Simbiosis , Genotipo
6.
Appl Environ Microbiol ; 88(3): e0208921, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34818107

RESUMEN

Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly Bemisia tabaci MEAM1 hosts "Candidatus Portiera aleyrodidarum" (here, "Ca. Portiera") and "Candidatus Hamiltonella defensa" (here, "Ca. Hamiltonella") bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression, and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that "Ca. Portiera" and "Ca. Hamiltonella" evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. IMPORTANCE Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-"Ca. Portiera"/"Ca. Hamiltonella" endosymbiosis, we demonstrate autophagy regulates the symbiont titers and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, "Ca. Portiera" and "Ca. Hamiltonella" alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide a new avenue for whitefly control via regulating autophagy in the future.


Asunto(s)
Halomonadaceae , Hemípteros , Complejo Vitamínico B , Animales , Autofagia , Halomonadaceae/genética , Hemípteros/microbiología , Simbiosis/genética , Complejo Vitamínico B/metabolismo
7.
BMC Genomics ; 22(1): 449, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134631

RESUMEN

BACKGROUND: Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. RESULTS: We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. CONCLUSIONS: Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host's obligatory endosymbiont B. aphidicola.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Enterobacteriaceae/genética , Expresión Génica , RNA-Seq , Simbiosis/genética
8.
Microb Ecol ; 82(4): 1009-1019, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33704553

RESUMEN

Ecological specialization is widespread in animals, especially in phytophagous insects, which have often a limited range of host plant species. This host plant specialization results from divergent selection on insect populations, which differ consequently in traits like behaviors involved in plant use. Although recent studies highlighted the influence of symbionts on dietary breadth of their insect hosts, whether these microbial partners influence the foraging capacities of plant-specialized insects has received little attention. In this study, we used the pea aphid Acyrthosiphon pisum, which presents distinct plant-specialized lineages and several secondary bacterial symbionts, to examine the possible effects of symbionts on the different foraging steps from plant searching to host plant selection. In particular, we tested the effect of secondary symbionts on the aphid capacity (1) to explore habitat at long distance (estimated through the production of winged offspring), (2) to explore habitat at short distance, and (3) to select its host plant. We found that secondary symbionts had a variable influence on the production of winged offspring in some genotypes, with potential consequences on dispersal and survival. By contrast, symbionts influenced both short-distance exploration and host plant selection only marginally. The implication of symbionts' influence on insect foraging capacities is discussed.


Asunto(s)
Áfidos , Animales , Genotipo , Pisum sativum , Fenotipo , Simbiosis
9.
J Anim Ecol ; 89(8): 1895-1905, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32324901

RESUMEN

Ecologically relevant symbioses are widespread in terrestrial arthropods but based on recent findings these specialized interactions are likely to be especially vulnerable to climate warming. Importantly, empirical data and climate models indicate that warming is occurring asynchronously, with night-time temperatures increasing faster than daytime temperatures. Daytime (DTW) and night-time warming (NTW) may impact ectothermic animals and their interactions differently as DTW results in greater daily temperature variation and moves organisms nearer to their thermal limits, while NTW avoids thermal limits and may relieve constraints of cooler night-time temperatures; a nuance that has largely been ignored in the literature. In laboratory experiments, we investigated how the timing of warming influences a widespread defensive mutualism involving the pea aphid Acyrthosiphon pisum, and its heritable symbiont, Hamiltonella defensa, which protects against an important natural enemy, the parasitic wasp Aphidius ervi. Three aphid sublines were experimentally created from single aphid genotype susceptible to A. ervi: one line infected with a highly protective H. defensa strain, one infected with a moderately protective strain and one without any facultative symbiont. We examined aphid fitness in the presence and absence of parasitoids and when exposed to an average 2.5°C increase occurring across three warming scenarios (night-time vs. daytime vs. uniform) relative to no-warming controls. An increase of 2.5°C, as predicted to occur by the IPCC before 2100, was sufficient to disable the aphid defensive mutualism regardless of the timing of warming; a surprising result given that the daily maxima for control and NTW scenarios were identical. We also found that warming negatively impacted (a) symbiont-mediated interactions between host and parasitoid more than symbiont-free ones; (b) species interactions (host-parasitoid) more than each participant independently and (c) aphids more than parasitoids even though higher trophic levels are generally predicted to be more affected by warming. Here we show that 2.5°C warming, regardless of timing, negatively impacted a common microbe-mediated defensive mutualism. While this was a laboratory-based study, results suggest that temperature increases predicted in the near-term may disrupt the many ecological symbioses present in terrestrial ecosystems.


Asunto(s)
Áfidos , Avispas , Animales , Ecosistema , Enterobacteriaceae , Simbiosis
10.
J Anim Ecol ; 89(5): 1216-1229, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32096554

RESUMEN

Aphid populations frequently include phenotypes that are resistant to parasitism by hymenopterous parasitoid wasps, which is often attributed to the presence of 'protective' facultative endosymbionts residing in aphid tissues, particularly Hamiltonella defensa. In field conditions, under parasitoid pressure, the observed coexistence of aphids with and without protective symbionts cannot be explained by their difference in fitness alone. Using the cereal aphid Rhopalosiphum padi as a model, we propose an alternative mechanism whereby parasitoids are more efficient at finding common phenotypes of aphid and experience a fitness cost when switching to the less common phenotype. We construct a model based on delay differential equations and parameterize and validate the model with values within the ranges obtained from experimental studies. We then use it to explore the possible effects on system dynamics under conditions of environmental stress, using our existing data on the effects of drought stress in crops as an example. We show the 'switching penalty' incurred by parasitoids leads to stable coexistence of aphids with and without H. defensa and provides a potential mechanism for maintaining phenotypic diversity among host organisms. We show that drought-induced reduction in aphid development time has little impact. However, greater reduction in fecundity on droughted plants of symbiont-protected aphids can cause insect population cycles when the system would be stable in the absence of drought stress. The stabilizing effect of the increased efficiency in dealing with more commonly encountered host phenotypes is applicable to a broad range of consumer-resource systems and could explain stable coexistence in competitive environments. The loss of stable coexistence when drought has different effects on the competing aphid phenotypes highlights the importance of scenario testing when considering biocontrol for pest management.


Asunto(s)
Áfidos , Avispas , Animales , Enterobacteriaceae , Fenotipo , Estrés Fisiológico , Simbiosis
11.
Microb Ecol ; 76(2): 453-458, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29290035

RESUMEN

Insect endosymbionts (hereafter, symbionts) can modify plant virus epidemiology by changing the physiology or behavior of vectors, but their role in nonpersistent virus pathosystems remains uninvestigated. Unlike propagative and circulative viruses, nonpersistent plant virus transmission occurs via transient contamination of mouthparts, making direct interaction between symbiont and virus unlikely. Nonpersistent virus transmission occurs during exploratory intracellular punctures with styletiform mouthparts when vectors assess potential host-plant quality prior to phloem feeding. Therefore, we used an electrical penetration graph (EPG) to evaluate plant probing of the cowpea aphid, Aphis craccivora Koch, an important vector of cucurbit viruses, in the presence and absence of two facultative, intracellular symbionts. We tested four isolines of A. craccivora: two isolines were from a clone from black locust (Robinia pseudoacacia L.), one infected with Arsenophonus sp. and one cured, and two derived from a clone from alfalfa (Medicago sativa L.), one infected with Hamiltonella defensa and one cured. We quantified exploratory intracellular punctures, indicated by a waveform potential drop recorded by the EPG, initiation speed and frequency within the initial 15 min on healthy and watermelon mosaic virus-infected pumpkins. Symbiont associations differentially modified exploratory intracellular puncture frequency by aphids, with H. defensa-infected aphids exhibiting depressed probing, and Arsenophonus-infected aphids an increased frequency of probing. Further, there was greater overall aphid probing on virus-infected plants, suggesting that viruses manipulate their vectors to enhance acquisition-transmission rates, independent of symbiont infection. These results suggest facultative symbionts differentially affect plant-host exploration behaviors and potentially nonpersistent virus transmission by vectors.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/virología , Insectos Vectores/virología , Virus de Plantas/fisiología , Simbiosis , Animales , Áfidos/fisiología , Bacteriófagos , Enterobacteriaceae/fisiología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Medicago sativa/virología , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Potyvirus/patogenicidad , Potyvirus/fisiología , Robinia/virología
12.
J Bacteriol ; 199(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28348026

RESUMEN

An important factor determining the impact of microbial symbionts on their animal hosts is the balance between the cost of nutrients consumed by the symbionts and the benefit of nutrients released back to the host, but the quantitative significance of nutrient exchange in symbioses involving multiple microbial partners has rarely been addressed. In this study on the association between two intracellular bacterial symbionts, "Candidatus Portiera aleyrodidarum" and "Candidatus Hamiltonella defensa," and their animal host, the whitefly Bemisia tabaci, we apply metabolic modeling to investigate host-symbiont nutrient exchange. Our in silico analysis revealed that >60% of the essential amino acids and related metabolites synthesized by "Candidatus Portiera aleyrodidarum" are utilized by the host, including a substantial contribution of nitrogen recycled from host nitrogenous waste, and that these interactions are required for host growth. In contrast, "Candidatus Hamiltonella defensa" retains most or all of the essential amino acids and B vitamins that it is capable of synthesizing. Furthermore, "Candidatus Hamiltonella defensa" suppresses host growth in silico by competition with "Candidatus Portiera aleyrodidarum" for multiple host nutrients, by suppressing "Candidatus Portiera aleyrodidarum" growth and metabolic function, and also by consumption of host nutrients that would otherwise be allocated to host growth. The interpretation from these modeling outputs that "Candidatus Hamiltonella defensa" is a nutritional parasite could not be inferred reliably from gene content alone but requires consideration of constraints imposed by the structure of the metabolic network. Furthermore, these quantitative models offer precise predictions for future experimental study and the opportunity to compare the functional organization of metabolic networks in different symbioses.IMPORTANCE The metabolic functions of unculturable intracellular bacteria with much reduced genomes are traditionally inferred from gene content without consideration of how the structure of the metabolic network may influence flux through metabolic reactions. The three-compartment model of metabolic flux between two bacterial symbionts and their insect host constructed in this study revealed that one symbiont is structured to overproduce essential amino acids for the benefit of the host, but the essential amino acid production in the second symbiont is quantitatively constrained by the structure of its network, rendering it "selfish" with respect to these nutrients. This study demonstrates the importance of quantitative flux data for elucidation of the metabolic function of symbionts. The in silico methodology can be applied to other symbioses with intracellular bacteria.


Asunto(s)
Enterobacteriaceae/fisiología , Halomonadaceae/fisiología , Hemípteros/microbiología , Simbiosis , Aminoácidos/metabolismo , Animales , Simulación por Computador , Redes y Vías Metabólicas , Interacciones Microbianas , Nitrógeno/metabolismo
13.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159793

RESUMEN

Insects and other animals commonly form symbioses with heritable bacteria, which can exert large influences on host biology and ecology. The pea aphid, Acyrthosiphon pisum, is a model for studying effects of infection with heritable facultative symbionts (HFS), and each of its seven common HFS species has been reported to provide resistance to biotic or abiotic stresses. However, one common HFS, called X-type, rarely occurs as a single infection in field populations and instead typically superinfects individual aphids with Hamiltonella defensa, another HFS that protects aphids against attack by parasitic wasps. Using experimental aphid lines comprised of all possible infection combinations in a uniform aphid genotype, we investigated whether the most common strain of X-type provides any of the established benefits associated with aphid HFS as a single infection or superinfection with H. defensa We found that X-type does not confer protection to any tested threats, including parasitoid wasps, fungal pathogens, or thermal stress. Instead, component fitness assays identified large costs associated with X-type infection, costs which were ameliorated in superinfected aphids. Together these findings suggest that X-type exploits the aphid/H. defensa mutualism and is maintained primarily as a superinfection by "hitchhiking" via the mutualistic benefits provided by another HFS. Exploitative symbionts potentially restrict the functions and distributions of mutualistic symbioses with effects that extend to other community members.IMPORTANCE Maternally transmitted bacterial symbionts are widespread and can have major impacts on the biology of arthropods, including insects of medical and agricultural importance. Given that host fitness and symbiont fitness are tightly linked, inherited symbionts can spread within host populations by providing beneficial services. Many insects, however, are frequently infected with multiple heritable symbiont species, providing potential alternative routes of symbiont maintenance. Here we show that a common pea aphid symbiont called X-type likely employs an exploitative strategy of hitchhiking off the benefits of a protective symbiont, Hamiltonella Infection with X-type provides none of the benefits conferred by other aphid symbionts and instead results in large fitness costs, costs lessened by superinfection with Hamiltonella These findings are corroborated by natural infections in field populations, where X-type is mostly found superinfecting aphids with Hamiltonella Exploitative symbionts may be common in hosts with communities of heritable symbionts and serve to hasten the breakdown of mutualisms.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/genética , Enterobacteriaceae/fisiología , Simbiosis , Animales , Girasa de ADN/genética , Genotipo , Respuesta al Choque Térmico , Avispas/microbiología
14.
BMC Evol Biol ; 16(1): 271, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27955622

RESUMEN

BACKGROUND: Insect parasitoids are under strong selection to overcome their hosts' defences. In aphids, resistance to parasitoids is largely determined by the presence or absence of protective endosymbionts such as Hamiltonella defensa. Hence, parasitoids may become locally adapted to the prevalence of this endosymbiont in their host populations. To address this, we collected isofemale lines of the aphid parasitoid Lysiphlebus fabarum from 17 sites in Switzerland and France, at which we also estimated the frequency of infection with H. defensa as well as other bacterial endosymbionts in five important aphid host species. The parasitoids' ability to overcome H. defensa-mediated resistance was then quantified by estimating their parasitism success on a single aphid clone (Aphis fabae fabae) that was either uninfected or experimentally infected with one of three different isolates of H. defensa. RESULTS: The five aphid species (Aphis fabae fabae, A. f. cirsiiacanthoides, A. hederae, A. ruborum, A. urticata) differed strongly in the relative frequencies of infection with different bacterial endosymbionts, but there was also geographic variation in symbiont prevalence. Specifically, the frequency of infection with H. defensa ranged from 22 to 47 % when averaged across species. Parasitoids from sites with a high prevalence of H. defensa tended to be more infective on aphids possessing H. defensa, but this relationship was not significant, thus providing no conclusive evidence that L. fabarum is locally adapted to the occurrence of H. defensa. On the other hand, we observed a strong interaction between parasitoid line and H. defensa isolate on parasitism success, indicative of a high specificity of symbiont-conferred resistance. CONCLUSIONS: This study is the first, to our knowledge, to test for local adaptation of parasitoids to the frequency of defensive symbionts in their hosts. While it yielded useful information on the occurrence of facultative endosymbionts in several important host species of L. fabarum, it provided no clear evidence that parasitoids from sites with a high prevalence of H. defensa are better able to overcome H. defensa-conferred resistance. The strong genetic specificity in their interaction suggests that it may be more important for parasitoids to adapt to the particular strains of H. defensa in their host populations than to the general prevalence of this symbiont, and it highlights the important role symbionts can play in mediating host-parasitoid coevolution.


Asunto(s)
Adaptación Fisiológica , Áfidos/microbiología , Áfidos/parasitología , Enterobacteriaceae/fisiología , Simbiosis , Avispas/fisiología , Animales , Áfidos/genética , Áfidos/fisiología , Fenómenos Fisiológicos Bacterianos , Femenino , Francia , Suiza
15.
Ecol Lett ; 19(7): 789-99, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27282315

RESUMEN

Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community-wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non-protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer-herbivore communities in the field.


Asunto(s)
Áfidos/microbiología , Ecosistema , Extinción Biológica , Simbiosis , Avispas , Animales , Enterobacteriaceae , Dinámica Poblacional
16.
Ecology ; 97(7): 1712-1723, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27859175

RESUMEN

It has become increasingly evident that many organisms rely on microbial symbionts for defense against natural enemies, but the ecological importance of defensive symbionts for natural communities still needs to be investigated. A well-known example is Hamiltonella defensa, a heritable endosymbiotic bacterium commonly found in aphids. Laboratory experiments have shown that H. defensa strongly protects aphids against parasitic wasps (parasitoids), although this protection is not equally effective against different species of parasitoids, or even different genotypes of the same species. These results suggest that H. defensa plays an important role in reducing aphid mortality by parasitoids and presumably affects the community composition of parasitoids relying on aphids as a resource. However, there is little evidence that this is indeed the case under natural conditions. We tested this in a field experiment with black bean aphids (Aphis fabae) by setting up replicated field plots with genetically identical aphids that did or did not harbor H. defensa and following their colonization by natural enemies over a growing season. We observed a clear reduction in parasitism of symbiont-protected aphids, particularly by the parasitoids posing the highest risk. However, protected aphids did not develop larger populations than unprotected ones, possibly reflecting the balancing effect of costs associated with harboring H. defensa. We also observed shifts in the parasitoid species composition on aphids protected by H. defensa, showing that defensive symbionts have the potential to alter the diversity and structure of food webs, with likely consequences for their function and stability.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/fisiología , Simbiosis , Avispas/fisiología , Animales , Áfidos/fisiología , Genotipo
17.
Oecologia ; 180(3): 735-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26603858

RESUMEN

Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.


Asunto(s)
Áfidos/microbiología , Áfidos/fisiología , Biodiversidad , Plantas/parasitología , Animales , Plantas/microbiología , Especificidad de la Especie , Simbiosis
18.
Proc Biol Sci ; 282(1799): 20142333, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25473015

RESUMEN

Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost-benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae, and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained.


Asunto(s)
Áfidos/microbiología , Simbiosis , Animales , Evolución Biológica , Interacciones Huésped-Parásitos/genética , Estadios del Ciclo de Vida , Reproducción
19.
Proc Biol Sci ; 280(1768): 20131275, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926148

RESUMEN

Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant-microbial and insect-microbial symbioses in modulating a plant-herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect- and plant-microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant-herbivore interactions.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/fisiología , Microbiología del Suelo , Solanum tuberosum/crecimiento & desarrollo , Simbiosis , Animales , Áfidos/fisiología , Biomasa , Ecosistema , Fertilidad , Herbivoria
20.
J Evol Biol ; 26(7): 1603-10, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23663140

RESUMEN

Genotype-by-genotype interactions demonstrate the existence of variation upon which selection acts in host-parasite systems at respective resistance and infection loci. These interactions can potentially be modified by environmental factors, which would entail that different genotypes are selected under different environmental conditions. In the current study, we checked for a G × G × E interaction in the context of average temperature and the genotypes of asexual lines of the endoparasitoid wasp Lysiphlebus fabarum and isolates of Hamiltonella defensa, a protective secondary endosymbiont of the wasp's host, the black bean aphid Aphis fabae. We exposed genetically identical aphids harbouring different isolates of H. defensa to three asexual lines of the parasitoid and measured parasitism success under three different temperatures (15, 22 and 29 °C). Although there was clear evidence for increased susceptibility to parasitoids at the highest average temperature and a strong G × G interaction between the host's symbionts and the parasitoids, no modifying effect of temperature, that is, no significant G × G × E interaction, was detected. This robustness of the observed specificity suggests that the relative fitness of different parasitoid genotypes on hosts protected by particular symbionts remains uncomplicated by spatial or temporal variation in temperature, which should facilitate biological control strategies.


Asunto(s)
Áfidos/parasitología , Interacciones Huésped-Parásitos/genética , Avispas/genética , Animales , Áfidos/genética , Áfidos/microbiología , Genotipo , Proteobacteria/genética , Simbiosis/genética , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda