Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.572
Filtrar
Más filtros

Publication year range
1.
Cell ; 184(10): 2525-2531, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33989545

RESUMEN

Human cell lines (CLs) are key assets for biomedicine but lack ancestral diversity. Here, we explore why genetic diversity among cell-based models is essential for making preclinical research more equitable and widely translatable. We lay out practical actions that can be taken to improve inclusivity in study design.


Asunto(s)
Investigación Biomédica/ética , Negro o Afroamericano/genética , Línea Celular , Medicina de Precisión/ética , Población Blanca/genética , Variación Genética , Humanos , Pruebas de Farmacogenómica
2.
Mol Cell ; 76(4): 600-616.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31679819

RESUMEN

Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation.


Asunto(s)
Genoma Humano , Regiones Promotoras Genéticas , Estructuras R-Loop , ARN sin Sentido/biosíntesis , ARN Largo no Codificante/biosíntesis , Transcripción Genética , Activación Transcripcional , Células HEK293 , Células HeLa , Humanos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Relación Estructura-Actividad
3.
J Cell Sci ; 137(12)2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786982

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Asunto(s)
Calcio , Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato , Mitocondrias , Animales , Humanos , Calcio/metabolismo , Señalización del Calcio , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C , Proteínas de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética
4.
J Proteome Res ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325989

RESUMEN

Separation in single-cell mass spectrometry (MS) improves molecular coverage and quantification; however, it also elongates measurements, thus limiting analytical throughput to study large populations of cells. Here, we advance the speed of bottom-up proteomics by capillary electrophoresis (CE) high-resolution mass spectrometry (MS) for single-cell proteomics. We adjust the applied electrophoresis potential to readily control the duration of electrophoresis. On the HeLa proteome standard, shorter separation times curbed proteome detection using data-dependent acquisition (DDA) but not data-independent acquisition (DIA) on an Orbitrap analyzer. This DIA method identified 1161 proteins vs 401 proteins by the reference DDA within a 15 min effective separation from single HeLa-cell-equivalent (∼200 pg) proteome digests. Label-free quantification found these exclusively DIA-identified proteins in the lower domain of the concentration range, revealing sensitivity improvement. The approach also significantly advanced the reproducibility of quantification, where ∼76% of the DIA-quantified proteins had <20% coefficient of variation vs ∼43% by DDA. As a proof of principle, the method allowed us to quantify 1242 proteins in subcellular niches in a single, neural-tissue fated cell in the live Xenopus laevis (frog) embryo, including many canonical components of organelles. DIA integration enhanced throughput by ∼2-4 fold and sensitivity by a factor of ∼3 in single-cell (subcellular) CE-MS proteomics.

5.
J Cell Physiol ; 239(4): e31176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38179601

RESUMEN

Tumor necrosis factor-α (TNF-α) is a ligand that induces both intrinsic and extrinsic apoptotic pathways in HeLa cells by modulating complex gene regulatory mechanisms. However, the full spectrum of TNF-α-modulated epitranscriptomic m6A marks is unknown. We employed a genomewide approach to examine the extent of m6A RNA modifications under TNF-α-modulated apoptotic conditions in HeLa cells. miCLIP-seq analyses revealed a plethora of m6A marks on 632 target mRNAs with an enrichment on 99 mRNAs associated with apoptosis. Interestingly, the m6A RNA modification patterns were quite different under cisplatin- and TNF-α-mediated apoptotic conditions. We then examined the abundance and translational efficiencies of several mRNAs under METTL3 knockdown and/or TNF-α treatment conditions. Our analyses showed changes in the translational efficiency of TP53INP1 mRNA based on the polysome profile analyses. Additionally, TP53INP1 protein amount was modulated by METTL3 knockdown upon TNF-α treatment but not CP treatment, suggesting the existence of a pathway-specific METTL3-TP53INP1 axis. Congruently, METLL3 knockdown sensitized HeLa cells to TNF-α-mediated apoptosis, which was also validated in a zebrafish larval xenograft model. These results suggest that apoptotic pathway-specific m6A methylation marks exist in cells and TNF-α-METTL3-TP53INP1 axis modulates TNF-α-mediated apoptosis in HeLa cells.


Asunto(s)
Apoptosis , Epigénesis Genética , Factor de Necrosis Tumoral alfa , Animales , Humanos , Apoptosis/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Células HeLa , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra
6.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35665815

RESUMEN

Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.


Asunto(s)
Actinas , Lamina Tipo A , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Forminas/metabolismo , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Xenopus laevis
7.
Chembiochem ; 25(5): e202300755, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228506

RESUMEN

Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactions in situ via a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror-image, ʟ-DNA nucleotides to produce heterochiral "gapmers". We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ-nucleic acid protection of oligonucleotides and DNA circuitry for applications in vivo.


Asunto(s)
ADN , Ácidos Nucleicos , Humanos , Oligonucleótidos , Endonucleasas , Nanotecnología
8.
Histochem Cell Biol ; 161(6): 507-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597938

RESUMEN

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.


Asunto(s)
Endocitosis , Lisosomas , Neuronas Motoras , Dióxido de Silicio , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Lisosomas/metabolismo , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Células HeLa , Células Cultivadas , Nanopartículas de Magnetita/química , Animales , Nanopartículas Magnéticas de Óxido de Hierro/química
9.
Photochem Photobiol Sci ; 23(3): 409-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319518

RESUMEN

In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.


Asunto(s)
Fotoquimioterapia , Polietilenglicoles , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Clorofila A , Células HeLa , Polisorbatos , Porfirinas/farmacología , Porfirinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Clorofila/química
10.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38636487

RESUMEN

Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.


Asunto(s)
Antineoplásicos , Cumarinas , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Triazoles , Humanos , Cumarinas/química , Cumarinas/farmacología , Triazoles/química , Triazoles/farmacología , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Células HeLa , Células MCF-7 , Supervivencia Celular/efectos de los fármacos , Ácido Láctico/química , Portadores de Fármacos/química , Ácido Poliglicólico/química , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos/métodos
11.
Mol Biol Rep ; 51(1): 564, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647725

RESUMEN

BACKGROUND: Recent studies suggest that hypoxia-inducible factor 1-alpha (HIF-1α) and the small GTPase protein Ras-related protein Rab-22 A (RAB22A) may be colocalized in the cytoplasm and that as a conequence they may enhance the formation of microvesicles in breast cancer cells under hypoxia. Therefore, we sought to determine whether these two proteins are present in intracellular complexes in breast carcinoma cells. METHODS AND RESULTS: Evaluation using molecular docking indicated that HIF-1α and RAB22A interact with each other. Co-immunoprecipitation of endogenous or ectopically expressed HIF-1α and RAB22A proteins in MDA-MB-231 breast cancer cells or HEK-293T cells demonstrated that endogenous HIF-1α and RAB22A can form an intracellular complex; however, transiently expressed HIF-1α and RAB22A failed to interact. Investigating RAB22A and HIF-1α interactions in various cancer cell lines under hypoxia may shed light on their roles in cancer cell survival and progression through regulation of intracellular trafficking by HIF-1α under hypoxic conditions. CONCLUSIONS: Our study is the first to reveal the potential involvement of HIF-1α in intracellular trafficking through physical interactions with the small GTPase protein RAB22A. We discuss the implications of our work on the role of exosomes and microvesicles in tumor invasiveness.


Asunto(s)
Neoplasias de la Mama , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas de Unión al GTP rab , Humanos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Células HEK293 , Hipoxia de la Célula , Simulación del Acoplamiento Molecular , Unión Proteica
12.
J Biochem Mol Toxicol ; 38(1): e23527, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37681557

RESUMEN

Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.


Asunto(s)
Diminazeno/análogos & derivados , Peptidil-Dipeptidasa A , Neoplasias del Cuello Uterino , Femenino , Humanos , Peptidil-Dipeptidasa A/metabolismo , Células HeLa , Regulación hacia Abajo , Neoplasias del Cuello Uterino/genética , Furina/genética , Furina/metabolismo , Oncogenes , Ciclo Celular , ARN Mensajero , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194142

RESUMEN

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Femenino , Humanos , Mananos , Células HeLa , Calidad de Vida , Candidiasis Vulvovaginal/prevención & control , Lactobacillus
14.
Biotechnol Appl Biochem ; 71(1): 61-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849224

RESUMEN

Cervical cancer is known as the second most pervasive malignancy in women across the globe. The role played by microRNAs (miRNAs) in the initiation, progression, and metastasis of this cancer has received specific attention. The use of natural compounds leading cancer cells toward apoptosis is a feasible strategy for cancer therapy. Oleuropein, an olive-extracted phenolic substance, displays anticancer properties. Here, it was attempted to assess the role played by oleuropein in cell viability in cervical cancer and changes in the expression of some miRNAs associated with cervical cancer as well as some of their possible target genes selected using bioinformatics analysis. For this purpose, HeLa cell line was exposed to several oleuropein concentrations for 48 and 72 h. After that, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry were employed to assess cell viability and apoptosis, respectively. In addition, to conduct bioinformatics analysis, Cytoscape computer program was used based on STRING database. Furthermore, to examine the role played by oleuropein in the expression of miRNAs of interest as well as their potential target genes, real-time PCR was employed. The findings indicated that oleuropein reduced cell viability through inducing apoptosis. As a result of treatment with oleuropein, miR-34a, miR-125b, and miR-29a showed increased expression levels, whereas miR-181b, miR-221, and miR-16 showed decreased expression levels. Furthermore, oleuropein reduced the expression of the anti-apoptotic genes Bcl-2 and Mcl1, whereas it elevated the expression of the pro-apoptotic Bid, Fas, and TNFRSF10B genes and the p53 tumor suppressor. Our results indicate that the apoptosis induction is a mechanism of action of oleuropein in HeLa cells. Because of its effect on the reflation of the expression of genes and miRNAs effective in the pathogenesis of cervical cancer, oleuropein shows potential as an effective research tool for developing new natural drugs for treating cervical cancer.


Asunto(s)
Glucósidos Iridoides , MicroARNs , Neoplasias del Cuello Uterino , Humanos , Femenino , MicroARNs/metabolismo , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Apoptosis , Muerte Celular , Transducción de Señal , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
15.
Mar Drugs ; 22(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786619

RESUMEN

Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.


Asunto(s)
Apoptosis , Autofagia , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Células HeLa , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Femenino , Antineoplásicos/farmacología
16.
Luminescence ; 39(9): e4892, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239788

RESUMEN

Herein, we describe the design and development of a new cell-permeable aggregation-induced emission (AIE) active 3-ethoxysalicylaldimine-based symmetrical azine molecule HDBE. The synthesized compound underwent comprehensive investigation of different spectroscopic methods, like NMR, mass and single crystal X-ray diffraction analysis. The fluorophore HDBE exhibited the bright orange colour AIE behaviour in THF-H2O mixture. The drastic enhancement of emission was achieved upon adding the water to the THF solution of HDBE, with a concentration of 90%. Along with the dynamic light scattering (DLS) and quantum yield measurements, the formation of aggregates was also verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Further, HDBE demonstrated excited state intramolecular proton transfer (ESIPT) characteristics in different polarity of solvents, which was corroborated by absorption, emission and lifetime spectroscopical investigations. The detailed scrutiny of X-ray structure of HDBE displayed the two strong intramolecular hydrogen bonding interactions, while solid-state fluorescent spectra showed dual emission that corresponds to enol and keto form confirming the ESIPT feature. Further, the synthesized AIE molecule was non-toxic and cell-permeable, making it easy to label as a biomarker in live HeLa cells via fluorescent bioimaging. These studies offer a quick and easy way to develop both AIE and ESIPT-coupled molecules for live cell bioimaging applications.


Asunto(s)
Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Células HeLa , Imagen Óptica , Estructura Molecular , Color , Protones , Supervivencia Celular/efectos de los fármacos
17.
Luminescence ; 39(8): e4855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099233

RESUMEN

Current research aims to screen the anticancer prospective of Leucas biflora phytocompounds against apoptotic regulator target protein essential for cancer progression. In gas chromatography-mass spectrometry analysis major phytocompounds such as tetracosahexaene, squalene, phytol, 22-stigmasten-3-one, stigmasterol, fluorene, and 1,4-dihydro were identified in ethanolic leaf extract of Leucas biflora. In vitro, the free radical scavenging potential of ethanolic leaf extract of Leucas biflora was examined through its DPPH and ABTS radical scavenging potential IC50 value 15.35 and 13.20 µg/ml, respectively. Dose-dependent cytotoxicity was monitored against both A549 lung cancer and HELA cervical cancer cells. Leucas biflora ethanolic leaf extract highly reduces the cell viability of both HELA and A549 cells in in vitro cytotoxicity assays. Leucas biflora ethanolic extract produces 23.76% and 29.76% viability rates against A549 lung and HELA cervical cancer cell lines, and their IC50 values differ slightly at 95.80 and 90.40 µg/ml, respectively. In molecular docking analysis lung cancer target protein-ligand complex 5Y9T-16132746 showed a maximum score of -14 kcal/mol by exhibiting stable binding affinity and interactions among all screened complexes. Based on docking score nine phytocompounds from Leucas biflora and two reference standard drugs were chosen for further analysis. Further validation reveals that the fluorene, 1,4-dihydro possess good ADMET, Bioactivity and density functional theory indices.


Asunto(s)
Antineoplásicos Fitogénicos , Extractos Vegetales , Humanos , Células HeLa , Células A549 , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Luminiscencia , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Relación Dosis-Respuesta a Droga , Hojas de la Planta/química , Estructura Molecular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
18.
Chem Biodivers ; 21(3): e202302072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268315

RESUMEN

Traditional medicinal practices often utilize herbal remedies for treating various diseases. This study focuses on exploring the phytochemical constituents, in-silico, in-vitro antioxidant, and anticancer activities of Valerian wallichii root extracts on human cervical epithelial carcinoma (HeLa) cell lines. The molecular docking approach was employed to predict the ligand molecule's orientation within the receptor like Epidermal growth factor receptor tyrosine kinase domain (PDB ID: 1M17) using Schrodinger's GLIDE model. Among the selected phytocompounds, hesperidin exhibited promising inhibitory activity against EGFR (Epidermal Growth Factor Receptor) domain with -8.701 kcal/mol docking score and interactions with MET 769, ASP 831, ASP776, LEU694 and ASN818 residues as compared to standard doxorubicin with -7.6 kcal/mol docking score and interactions with ASP 831, ASN818 and ASP776 residues and further, various antioxidant activity was assessed and In-vitro anticancer activity against HeLa cell lines was evaluated by hydroalcoholic root extracts demonstrated antioxidant capacities, and selective cytotoxicity was observed, with IC50 : 45.759±0.42 µg/mL for the overall extract and IC50 : 30.245±0.58 µg/mL for the EAF fraction as compared to standard doxorubicin with IC50 : 25.9891±0.25 µg/mL, respectively. The present study concluded that Valerian wallichii L possesses potential human cervical epithelial carcinoma cell line inhibition properties based on the computer aided drug design models and in-vitro activity.


Asunto(s)
Antineoplásicos , Carcinoma , Valeriana , Humanos , Células HeLa , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Extractos Vegetales/química , Doxorrubicina , Carcinoma/tratamiento farmacológico , Receptores ErbB
19.
Chem Biodivers ; : e202401980, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400495

RESUMEN

The target compounds benzothiazole derivatives (8a-g) were synthesized starting from the norbornene. The antiproliferative activities of the compounds 6a-g and 8a-g were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay using 5-fluorouracil (5-FU) as standard. In both series, when compared with 5-FU (IC50=<5 µM for C6 and 16.33µM for HeLa), the most active compounds against C6 cells were 6a and 8g with IC50 values of 14.13 µM and 29.99 µM, respectively, while 6a, 6e, 6f and 8b were the most active compounds against HeLa cells with IC50 values of <5, <5, 19.33 and 1813 µM, respectively. Addition, to predict the physicochemical and AMDE properties of the tested compounds, SwissADME online web tool was used. The results showed that all compounds possess promising predicted physiochemical and pharmacokinetic properties, and they complied with Lipinski's rule of 5 indicating that they are predicted to be orally bioavailable, and they possess a predicted bioavailability score of 0.55. Furthermore, in SwissADME Boiled-Egg chart, all compounds showed high predicted GIT absorption, and while compounds 6a-g showed blood brain barrier (BBB) permeation, the compounds 8a-g did not. Moreover, all compounds are not p-glycoprotein (P-gp) substrates.

20.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125863

RESUMEN

Kuwanon C is a unique flavonoid found in the mulberry family, characterized by two isopentenyl groups. While previous research has focused on various properties of kuwanon C, such as antioxidant, hypoglycemic, antimicrobial, food preservation, skin whitening, and nematode lifespan extension, little attention has been given to its potential role in oncological diseases. In this study, we investigate the antitumor effect of kuwanon C in cervical cancer cells and elucidate its specific mechanism of action. We assessed the antitumor effects of kuwanon C using various experimental techniques, including cell proliferation assay, wound healing assays, EdU 488 proliferation assay, mitochondrial membrane potential assay, ROS level assay, cell cycle, apoptosis analysis, and studies on kuwanon C target sites and molecular docking. The results revealed that kuwanon C significantly impacted the cell cycle progression of HeLa cells, disrupted their mitochondrial membrane potential, and induced a substantial increase in intracellular ROS levels. Moreover, kuwanon C exhibited notable anti-proliferative and pro-apoptotic effects on HeLa cells, surpassing the performance of commonly used antitumor drugs such as paclitaxel and cisplatin. Notably, kuwanon C demonstrated superior efficacy while also being more easily accessible compared to paclitaxel. Our study demonstrates that kuwanon C exerts potent antitumor effects by its interaction with the mitochondrial and endoplasmic reticulum membranes, induces a significant production of ROS, disrupts their normal structure, inhibits cell cycle progression, and stimulates apoptotic signaling pathways, ultimately resulting in the death of HeLa tumor cells. As an isopentenyl compound derived from Morus alba, kuwanon C holds great promise as a potential candidate for the development of effective antitumor drugs.


Asunto(s)
Apoptosis , Proliferación Celular , Retículo Endoplásmico , Potencial de la Membrana Mitocondrial , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células HeLa , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda