Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Appl Mater Interfaces ; 16(33): 43535-43547, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106362

RESUMEN

In recent years, the Na-ion SuperIonic CONductor (NASICON) based polyanionics are considered pertinent cathode materials in sodium-ion batteries due to their 3D open framework, which can accommodate a wide range of Na content and can offer high ionic conductivity with great structural stability. However, owing to the inferior electronic conductivity, these materials suffer from unappealing rate capability and cyclic stability for practical applications. Therefore, in this work we investigate the effect of Co substitution at the V site on the electrochemical performance and diffusion kinetics of Na3V2-xCox(PO4)3/C (x = 0-0.15) cathodes. All the samples are characterized through Rietveld refinement of the X-ray diffraction patterns, Raman spectroscopy, transmission electron microscopy, etc. We demonstrate improved electrochemical performance for the x = 0.05 electrode with a reversible capacity of 105 mAh g-1 at 0.1 C. Interestingly, the specific capacity of 80 mAh g-1 is achieved at 10 C with retention of about 92% after 500 cycles and 79.5% after 1500 cycles and having nearly 100% Coulombic efficiency. The extracted diffusion coefficient values through the galvanostatic intermittent titration technique and cyclic voltammetry are found to be in the range of 10-9 to 10-11 cm2 s-1. The post-mortem studies show excellent structural and morphological stability after testing for 500 cycles at 10 C. Our study reveals the role of optimal dopant of Co3+ ions at the V site in improving the cyclic stability at a high current rate.

2.
J Colloid Interface Sci ; 613: 84-93, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032779

RESUMEN

The distinctive pomegranate-like Nb2O5/Carbon@N-doped carbon (Nb2O5/C@NC) composites are fabricated using hydrothermal method integrated with nitrogen doped carbon coating procedure. For the SIBs anode, the Nb2O5/C@NC composites present superior rate character and sustainable capacity (117 mAh g-1 upon 1000 cycles at 5 A g-1). The in-situ X-ray diffraction (XRD) is utilized to research its sodium storage mechanism. Furthermore, for PIBs, the Nb2O5/C@NC composites present sustainable capacity (81 mAh g-1 upon 1000 cycles at 1 A g-1). The outstanding performance of Nb2O5/C@NC composites is ascribed to its unique architecture, in which Nb2O5 nanocrystals embedded in porous carbon can restrain agglomeration of Nb2O5 nanocrystals, enhance electron/ion diffusion kinetics, and ensure electrolyte accessibility, and moreover, NC shell layer can provide effective active sites and further increase ions/electrons transfer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda