Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biotechnol Appl Biochem ; 71(1): 223-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964505

RESUMEN

The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.


Asunto(s)
Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Humanos , Anhidrasa Carbónica I/metabolismo , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Benzotiazoles , Sulfanilamida , Estructura Molecular
2.
Chemphyschem ; 24(10): e202200770, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36695108

RESUMEN

We present in this article a case study on the thermodynamics of binding to human carbonic anhydrase II (HCA II) by three well-known inhibitors, viz. (a) acetazolamide (AZM) that directly binds to the catalytic Zn(II) ion at the active site, (b) non-zinc binding 6-hydroxy-2-thioxocoumarin (FC5) (c) 2-[(S)-benzylsulfinyl]benzoic acid (3G1). In each case, the crystal structure or its analogue of inhibitor-bound HCA II has been used to perform classical molecular dynamics (MD) simulation in water till 1 µ s ${1\hskip0.33em\mu s}$ . AZM and FC5 are found to undergo repeated binding and unbinding with markedly different dynamics from the partially buried, substrate-binding hydrophobic pocket near the active site. 3G1, on the other hand, is found to remain mostly at its crystallographic binding site occluded from the active site of HCA II. The associated binding free energies ( Δ G b i n d , s o l v ${{\rm \Delta }{G}_{bind,solv}}$ ) have been computed using the known MM/GBSA method and compared to the available experimental data. Our results show that Δ G b i n d , s o l v ${{\rm \Delta }{G}_{bind,solv}}$ encounters several issues including limited sampling of multiple binding sites and incorrect prediction of the affinity of the chosen ligands. Possible use of the simulation results in further construction of Markov state models is also discussed.


Asunto(s)
Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Humanos , Anhidrasa Carbónica II/química , Inhibidores de Anhidrasa Carbónica/química , Acetazolamida/química , Acetazolamida/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular
3.
Bioorg Chem ; 133: 106399, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731297

RESUMEN

Positron emission tomography (PET) and fluorescent imaging play a pivotal role in medical diagnosis, biomedical oncologic research, and drug development process, which include identification of target location, target engagement, but also prove on mechanism of action or pharmacokinetics of new drug candidates. PET estimates physiological changes at the molecular level using specific radiotracers containing a short-lived positron emitting radionuclide such as fluorine-18 or carbon-11, whereas fluorescent imaging techniques use fluorescent probes labeled with suitable drug candidates for detection at the molecular level. The human carbonic anhydrase (hCA) isoforms IX and XII are overexpressed in hypoxic cancer cells, promoting tumor growth by regulating extra/intracellular pH, ferroptosis, and metabolism, being recognized as promising targets for anticancer theranostic agents. In this review, we have focused on PET radiotracers as well as fluorescent probes for diagnosis and treatment of tumors expressing hCA IX and hCA XII.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Anhidrasa Carbónica IX/metabolismo , Colorantes Fluorescentes/farmacología , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Tomografía de Emisión de Positrones , Estructura Molecular
4.
J Enzyme Inhib Med Chem ; 38(1): 2189126, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36950918

RESUMEN

A series of 20 newly designed (E)-1-(4-sulphamoylphenylethyl)-3-arylidene-5-aryl-1H-pyrrol-2(3H)-ones was synthesised and assessed as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors towards four human isoforms of pharmaceutical interest, that is, hCA I, II, IX and XII. The compounds displayed low to high nanomolar potency against all the isoforms. Introducing strong electron withdrawing groups at the para position of the arylidene ring increased the binding affinity to the enzyme. All compounds showed acceptable pharmacokinetic range and physicochemical characteristics as determined by computational ADMET analysis. Density Functional Theory (DFT) calculations of 3n were carried to gain understanding on the stability of the E and Z isomers. The energy values clearly indicate the stability of E isomer over Z isomer by -8.2 kJ mol-1. Our findings indicate that these molecules are useful as leads for discovering new CA inhibitors.


Asunto(s)
Antígenos de Neoplasias , Anhidrasas Carbónicas , Humanos , Anhidrasa Carbónica IX , Antígenos de Neoplasias/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Modelos Teóricos , Relación Estructura-Actividad , Estructura Molecular
5.
J Enzyme Inhib Med Chem ; 38(1): 2270183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870190

RESUMEN

Tumour associated carbonic anhydrases (CAs) IX and XII have been recognised as potential targets for the treatment of hypoxic tumours. Therefore, considering the high pharmacological potential of the chromene scaffold as selective ligand of the IX and XII isoforms, two libraries of compounds, namely 2H-chromene and 7H-furo-chromene derivatives, with diverse substitution patterns were designed and synthesised. The structure of the newly synthesised compounds was characterised and their inhibitory potency and selectivity towards human CA off target isoforms I, II and cancer-associated CA isoforms IX and XII were evaluated. Most of the compounds inhibit CA isoforms IX and XII with no activity against the I and II isozymes. Thus, while the potency was influenced by the substitution pattern along the chromene scaffold, the selectivity was conserved along the series, confirming the high potential of both 2H-chromene and 7H-furo-chromene scaffolds for the design of isozyme selective inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica I , Anhidrasa Carbónica II , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antígenos de Neoplasias/química , Benzopiranos/farmacología , Isoenzimas/metabolismo , Estructura Molecular
6.
Arch Pharm (Weinheim) ; 356(4): e2200508, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36587981

RESUMEN

Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Humanos , Relación Estructura-Actividad , Anhidrasa Carbónica IX/química , Anhidrasa Carbónica IX/metabolismo , Estructura Molecular , Anhidrasas Carbónicas/metabolismo , Desarrollo de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química , Cumarinas/farmacología , Cumarinas/química , Sulfonamidas/farmacología , Sulfonamidas/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química
7.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298228

RESUMEN

Carbonic anhydrases (CAs) are a metalloenzyme family that have important roles in cellular processes including pH homeostasis and have been implicated in multiple pathological conditions. Small molecule inhibitors have been developed to target carbonic anhydrases, but the effects of post-translational modifications (PTMs) on the activity and inhibition profiles of these enzymes remain unclear. Here, we investigate the effects of phosphorylation, the most prevalent carbonic anhydrase PTM, on the activities and drug-binding affinities of human CAI and CAII, two heavily modified active isozymes. Using serine to glutamic acid (S > E) mutations to mimic the effect of phosphorylation, we demonstrate that phosphomimics at a single site can significantly increase or decrease the catalytic efficiencies of CAs, depending on both the position of the modification and the CA isoform. We also show that the S > E mutation at Ser50 of hCAII decreases the binding affinities of hCAII with well-characterized sulphonamide inhibitors including by over 800-fold for acetazolamide. Our findings suggest that CA phosphorylation may serve as a regulatory mechanism for enzymatic activity, and affect the binding affinity and specificity of small, drug and drug-like molecules. This work should motivate future studies examining the PTM-modification forms of CAs and their distributions, which should provide insights into CA physiopathological functions and facilitate the development of 'modform-specific' carbonic anhydrase inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Humanos , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica II , Fosforilación , Dominio Catalítico , Inhibidores de Anhidrasa Carbónica/química , Anhidrasa Carbónica IX/metabolismo
8.
Anal Biochem ; 652: 114748, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618035

RESUMEN

A simple and time-saving colorimetric method was developed to quantify sulfonamides (SAAs) in milk via inhibition of the human carbonic anhydrase II (hCAII)-like activity of ZIF-8 that can hydrolyze p-nitrophenyl acetate (pNPA) to p-nitrophenol (pNP), following the color change from yellow to colorless. Effects of different reaction conditions, including pH, temperature, amount of ZIF-8, and incubation time, were investigated. The value of Michaelis-Menten constant (Km) is measured to be 0.15 mM, which exhibits high affinity to pNPA. The IC50 (0.17, 0.24, and 0.60 mM) and inhibition constant (Ki) (0.09, 0.13, and 0.33 mM) of sulfamethazine (SD), sulfadimethoxine (SDM), and sulfathiazole (ST) on ZIF-8 were measured, respectively. Moreover, the activity of ZIF-8 remains more than 90.0% of its initial activity after 30 days' storage. The colorimetric method for SD, SDM, and ST determination was established at the linear ranges of 6.3-750.0 µM (1.75-208.75 mg/kg), 6.3-750.0 µM (1.96-232.75 mg/kg), and 5.0-1250.0 µM (1.28-319.15 mg/kg) with limit of detection of 4.3, 3.2, and 3.9 µΜ (1.2, 0.99, and 0.96 mg/kg), respectively. In addition, the spiked recoveries of SAAs in milk sample are in the range of 81.6%-106.7% with RSD less than 6.5%. In short, the developed colorimetric method can achieve rapid analysis of SAAs in milk with simple operations.


Asunto(s)
Colorimetría , Leche , Animales , Anhidrasa Carbónica II , Colorimetría/métodos , Leche/química , Sulfadimetoxina/análisis , Sulfonamidas/análisis
9.
J Enzyme Inhib Med Chem ; 36(1): 954-963, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33947294

RESUMEN

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Animales , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
J Enzyme Inhib Med Chem ; 36(1): 1056-1060, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34000969

RESUMEN

The non-nucleoside reverse transcriptase inhibitor VM1500A is approved for the treatment of HIV/AIDS in its N-acyl sulphonamide prodrug form elsulfavirine (Elpida®). Biochemical profiling against twelve human carbonic anhydrase (CA, EC 4.2.1.1) isoforms showed that while elsulfavirine was a weak inhibitor of all isoforms, VM1500A potently and selectively inhibited human (h) hCA VII isoform, a proven target for the therapy of neuropathic pain. The latter is a common neurologic complication of HIV infection and we hypothesise that by using Elpida® in patients may help alleviate this debilitating symptom.


Asunto(s)
Amidas/farmacología , Fármacos Anti-VIH/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , VIH/efectos de los fármacos , Profármacos/farmacología , Sulfonas/farmacología , Amidas/química , Fármacos Anti-VIH/química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Profármacos/química , Relación Estructura-Actividad , Sulfonas/química
11.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681940

RESUMEN

Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6-91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5-9.6 nM). Various derivatives were also promising for some other isozymes.


Asunto(s)
Aminoácidos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/química , Triazinas/química , Antígenos de Neoplasias , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica IV/antagonistas & inhibidores , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasas Carbónicas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Bencenosulfonamidas
12.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008553

RESUMEN

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Asunto(s)
Benzoatos/farmacología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X/métodos , Humanos , Isoenzimas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica/fisiología , Relación Estructura-Actividad , Termodinámica , Microambiente Tumoral/efectos de los fármacos , Bencenosulfonamidas
13.
J Biol Inorg Chem ; 25(7): 979-993, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32926233

RESUMEN

Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase.


Asunto(s)
Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Espectrometría de Masas , Auranofina/metabolismo , Auranofina/farmacología , Anhidrasa Carbónica I/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
14.
Bioorg Chem ; 95: 103557, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911296

RESUMEN

Human carbonic anhydrase-II (hCA-II) is the most dominant physiologic isoform amongst the sixteen reported hCA isoforms. Because of its high availability in the different anatomical, and cellular sites of the eye like retina and lens, it plays a more prominent role in the regulation of intraocular pressure than the other twelve catalytically active hCA isoforms. This isoform is also located in the brain, kidney, gastric mucosa, osteoclasts, RBCs, skeletal muscle, testes, pancreas, lungs, etc. Earlier, hCA-II inhibitors were designed based on the sulfonamides e.g. acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. and they were used systemically in antiglaucoma therapy. Many successful attempts have been made by the researchers in order to design more potent and effective inhibitors by incorporating various moieties in sulphonamides. Some novel scaffolds like chalcones, thiophenes, organotellurium compounds, dithiocarbamate, selenide, and 2-benzylpyrazine, etc. were also designed as hCA-II inhibitors and their inhibitory efficacy was proved in the nanomolar range. In order to obtain relevant information from the insights of their structure-activity relationship, the reported hCA-II inhibitors from the year 1989 to 2019 were critically analysed. It gave a complete insight into the relationship between their structure-activity and hCA-II inhibition. The broad spectrum of our investigation may help researchers to summarize all the crucial structural information required for the development of more potent hCA-II inhibitors for glaucoma.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Glaucoma/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Humanos , Relación Estructura-Actividad
15.
Bioorg Chem ; 100: 103931, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450385

RESUMEN

Acute mountain sickness (AMS) affects approximately 25-50% of newcomers to high altitudes. Two human carbonic anhydrase isoforms, hCA I and II, play key roles in developing high altitude illnesses. However, the only FDA-approved drug for AMS is acetazolamide (AAZ), which has a nearly 100 times weaker inhibitory activity against hCA I (Ki = 1237.10 nM) than hCA II (Ki = 13.22 nM). Hence, developing potent dual hCA I/II inhibitors for AMS prevention and treatment is a critical medical need. Here we identified N-quinary heterocycle-4-sulphamoylbenzamides as potent hCA I/II inhibitors. The newly designed compounds 2b, 5b, 5f, 6d, and 6f possessed the desired inhibitory activities (hCA I: Ki = 16.95-52.71 nM; hCA II: Ki = 8.61-18.64 nM). Their hCA I inhibitory capacity was 22- to 76-fold stronger than that of AAZ. Relative to the control group for survival in a mouse model of hypoxia, 2b and 6d prolonged the survival time of mice by 21.7% and 29.3%, respectively, which was longer than those of AAZ (6.5%). These compounds did not display any apparent toxicity in vitro and in vivo. In addition, docking simulations suggested that the quinary aromatic heterocycle groups stabilised the interaction between hCA I/II and the inhibitors, which could be further exploited in structure optimization studies. Hence, future functional studies may confirm 2b and 6d as potential clinical candidate compounds with anti-hypoxic activity against AMS.


Asunto(s)
Benzamidas/química , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica I/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/química , Animales , Benzamidas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , Locomoción/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
16.
Int J Mol Sci ; 21(10)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456080

RESUMEN

Various sulfonamide derivatives are intensively studied as anticancer agents owing to their inhibitory activity against human tumor-associated carbonic anhydrase isoforms. In this work, different synthetic procedures for the series of 1,3,5-triazinyl-aminobenzenesulfonamide conjugates with amino acids, possessing polar uncharged, negatively charged, and hydrophobic side chain, were studied and optimized with respect to the yield/purity of the synthesis/product as well as the time of synthetic reaction. These procedures were compared to each other via characteristic HPLC-ESI-DAD/QTOF/MS analytical product profiles, and their benefits as well as limitations were discussed. For new sulfonamide derivatives, incorporating s-triazine with a symmetric pair of polar and some less-polar proteinogenic amino acids, inhibition constants (KIs) against four human carboanhydrases (hCAs), namely cytosolic hCA I, II, transmembrane hCA IV, and the tumor-associated, membrane-bound hCA IX isoforms, were computationally predicted applying various methods of the advanced statistical analysis. Quantitative structure-activity relationship (QSAR) analysis indicated an impressive KI ratio (hCA II/hCA IX) 139.1 and hCA IX inhibition constant very similar to acetazolamide (KI = 29.6 nM) for the sulfonamide derivative disubstituted with Gln. The derivatives disubstituted with Ser, Thr, and Ala showed even lower KIs (8.7, 13.1, and 8.4 nM, respectively).


Asunto(s)
Aminoácidos/química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Sulfonamidas/química , Triazinas/química , Acetazolamida/farmacología , Antígenos de Neoplasias/química , Anhidrasa Carbónica I/química , Anhidrasa Carbónica II/química , Anhidrasa Carbónica IV/química , Anhidrasa Carbónica IX/química , Inhibidores de Anhidrasa Carbónica/farmacología , Cromatografía Líquida de Alta Presión , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Modelos Moleculares , Redes Neurales de la Computación , Isoformas de Proteínas/metabolismo , Programas Informáticos , Relación Estructura-Actividad , Bencenosulfonamidas
17.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283813

RESUMEN

A series of new 3-phenyl-5-aryl-N-(4-sulfamoylphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives was designed here, synthesized, and studied for carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity against the human (h) isozymes I, II, and VII (cytosolic, off-target isoforms), and IX and XII (anticancer drug targets). Generally, CA I was not effectively inhibited, whereas effective inhibitors were identified against both CAs II (KIs in the range of 5.2-233 nM) and VII (KIs in the range of 2.3-350 nM). Nonetheless, CAs IX and XII were the most susceptible isoforms to this class of inhibitors. In particular, compounds bearing an unsubstituted phenyl ring at the pyrazoline 3 position showed 1.3-1.5 nM KIs against CA IX. In contrast, a subset of derivatives having a 4-halo-phenyl at the same position of the aromatic scaffold even reached subnanomolar KIs against CA XII (0.62-0.99 nM). Docking studies with CA IX and XII were used to shed light on the derivative binding mode driving the preferential inhibition of the tumor-associated CAs. The identified potent and selective CA IX/XII inhibitors are of interest as leads for the development of new anticancer strategies.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas , Pirazoles/farmacología , Antineoplásicos/química , Sitios de Unión , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Humanos , Isoenzimas , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Pirazoles/química , Relación Estructura-Actividad
18.
Molecules ; 25(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992797

RESUMEN

Human carbonic anhydrases (hCAs) belong to a well characterized group of metalloenzymes that catalyze the conversion of carbonic dioxide into bicarbonate. There are currently 15 known human isoforms of carbonic anhydrase with different functions and distribution in the body. This links to the relevance of hCA variants to several diseases such as glaucoma, epilepsy, mountain sickness, ulcers, osteoporosis, obesity and cancer. This review will focus on two of the human isoforms, hCA I and hCA II. Both are cytosolic enzymes with similar topology and 60% sequence homology but different catalytic efficiency and stability. Proteins in general adsorb on surfaces and this is also the case for hCA I and hCA II. The adsorption process can lead to alteration of the original function of the protein. However, if the function is preserved interesting biotechnological applications can be developed. This review will cover the knowledge about the interaction between hCAs and nanomaterials. We will highlight how the interaction may lead to conformational changes that render the enzyme inactive. Moreover, the importance of different factors on the final effect on hCAs, such as protein stability, protein hydrophobic or charged patches and chemistry of the nanoparticle surface will be discussed.


Asunto(s)
Anhidrasa Carbónica II/química , Anhidrasa Carbónica I/química , Nanoestructuras/química , Adsorción , Estabilidad de Enzimas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
19.
Arch Pharm (Weinheim) ; 352(6): e1800359, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31125504

RESUMEN

In this study, synthesis of ethyl 2-((4-bromophenyl)diazenyl)-3-oxo-phenylpropanoate 1 was carried out and a series of new 3H-pyrazol-3-ones (P1-7) were synthesized from 1 as well as various hydrazines. The obtained yields of the synthesized compounds were moderate (40-70%) and these compounds were confirmed by spectral data. These novel pyrazoline derivatives were effective inhibitor compounds of the human carbonic anhydrase I and II isozymes (hCAs I and II) and of the acetylcholinesterase (AChE) enzyme, with Ki values in the range of 17.4-40.7 nM for hCA I, 16.1-55.2 nM for hCA II, and 48.2-84.1 nM for AChE. In silico studies were performed on the compounds inhibiting hCA I, hCA II, and AChE receptors. On the basis of the findings, the inhibition profile of the new pyrazoline compounds at the receptors was determined.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de la Colinesterasa/síntesis química , Diseño de Fármacos , Pirazoles/síntesis química , Acetilcolinesterasa/metabolismo , Sitios de Unión , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Simulación por Computador , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Relación Estructura-Actividad
20.
Molecules ; 24(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262068

RESUMEN

To find novel human carbonic anhydrase (hCA) inhibitors, we synthesized thirteen compounds by combining thiazolidinone with benzenesulfonamide. The result of the X-ray single-crystal diffraction experiment confirmed the configuration of this class of compounds. The enzyme inhibition assays against hCA II and IX showed desirable potency profiles, as effective as the positive controls. The docking studies revealed that compounds (2) and (7) efficiently bound in the active site cavity of hCA IX by forming sufficient interactions with active site residues. The fragment of thiazolidinone played an important role in the binding of the molecules to the active site.


Asunto(s)
Antígenos de Neoplasias , Anhidrasa Carbónica II , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica , Simulación del Acoplamiento Molecular , Sulfonamidas , Antígenos de Neoplasias/química , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Dominio Catalítico , Humanos , Sulfonamidas/síntesis química , Sulfonamidas/química , Bencenosulfonamidas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda