RESUMEN
Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction ( f esc ) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine f esc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy ( SIF 760 canopy ) to leaf level ( SIF 760 leaf ). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine f esc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating f esc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency ( ε SIF ) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency.
RESUMEN
Terrestrial gross primary productivity (GPP) plays an essential role in the global carbon cycle, but the quantification of the spatial and temporal variations in photosynthesis is still largely uncertain. Our work aimed to investigate the potential of remote sensing to provide new insights into plant photosynthesis at a fine spatial resolution. This goal was achieved by exploiting high-resolution images acquired with the FLuorescence EXplorer (FLEX) airborne demonstrator HyPlant. The sensor was flown over a mixed forest, and the images collected were elaborated to obtain two independent indicators of plant photosynthesis. First, maps of sun-induced chlorophyll fluorescence (F), a novel indicator of plant photosynthetic activity, were successfully obtained at both the red and far-red peaks (r2 = 0.89 and p < 0.01, r2 = 0.77 and p < 0.01, respectively, compared to top-of-canopy ground-based measurements acquired synchronously with the overflight) over the forested study area. Second, maps of GPP and absorbed photosynthetically active radiation (APAR) were derived using a customised version of the coupled biophysical model Breathing Earth System Simulator (BESS). The model was driven with airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and leaf area index (LAI)) and meteorological data providing a high-resolution snapshot of the variables of interest across the study site. The LCC and LAI were accurately estimated (RMSE = 5.66 µg cm-2 and RMSE = 0.51 m2m-2, respectively) through an optimised Look-Up-Table-based inversion of the PROSPECT-4-INFORM radiative transfer model, ensuring the accurate representation of the spatial variation of these determinants of the ecosystem's functionality. The spatial relationships between the measured F and modelled BESS outputs were then analysed to interpret the variability of ecosystem functioning at a regional scale. The results showed that far-red F is significantly correlated with the GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p < 0.001) in the spatial domain and that this relationship is nonlinear. Conversely, no statistically significant relationships were found between the red F and the GPP or APAR (p > 0.05). The spatial relationships found at high resolution provide valuable insight into the critical role of spatial heterogeneity in controlling the relationship between the far-red F and the GPP, indicating the need to consider this heterogeneity at a coarser resolution.
RESUMEN
Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.
Asunto(s)
Clorofila/fisiología , Bosques , Fotosíntesis/fisiología , Pinus taeda/fisiología , Hojas de la Planta/fisiología , Fluorescencia , North Carolina , Desarrollo de la PlantaRESUMEN
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.
Asunto(s)
Clorofila/fisiología , Fotosíntesis , Tecnología de Sensores Remotos/métodos , Espectrometría de Fluorescencia , Luz Solar , FluorescenciaRESUMEN
Hyperspectral satellite imagery provides highly-resolved spectral information for large areas and can provide vital information. However, only a few imaging spectrometer missions are currently in operation. Aiming to generate synthetic satellite-based hyperspectral imagery potentially covering any region, we explored the possibility of applying statistical learning, i.e. emulation. Based on the relationship of a Sentinel-2 (S2) scene and a hyperspectral HyPlant airborne image, this work demonstrates the possibility to emulate a hyperspectral S2-like image. We tested the role of different machine learning regression algorithms (MLRA) and varied the image-extracted training dataset size. We found superior performance of Neural Network (NN) as opposed to the other algorithms when trained with large datasets (up to 100'000 samples). The developed emulator was then applied to the L2A (bottom-of-atmosphere reflectance) S2 subset, and the obtained S2-like hyperspectral reflectance scene was evaluated. The validation of emulated against reference spectra demonstrated the potential of the technique. R 2 values between 0.75-0.9 and NRMSE between 2-5% across the full 402-2356 nm range were obtained. Moreover, epistemic uncertainty is obtained using the dropout technique, revealing spatial fidelity of the emulated scene. We obtained highest SD values of 0.05 (CV of 8%) in clouds and values below 0.01 (CV of 7%) in vegetation land covers. Finally, the emulator was applied to an entire S2 tile (5490x5490 pixels) to generate a hyperspectral reflectance datacube with the texture of S2 (60Gb, at a speed of 0.14sec/10000pixels). As the emulator can convert any S2 tile into a hyperspectral image, such scenes give perspectives how future satellite imaging spectroscopy will look like.
RESUMEN
ESA's Eighth Earth Explorer mission "FLuorescence EXplorer" (FLEX) will be dedicated to the global monitoring of the chlorophyll fluorescence emitted by vegetation. In order to properly interpret the measured fluorescence signal, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem formation with Sentinel-3 (S3), which conveys the Ocean and Land Color Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In support of FLEX's preparatory activities, this paper presents a first validation exercise of OLCI vegetation products against in situ data coming from the 2018 FLEXSense campaign. During this campaign, leaf chlorophyll content (LCC) and leaf area index (LAI) measurements were collected over croplands, while HyPlant DUAL images of the area were acquired at a 3 m spatial resolution. A multiscale validation strategy was pursued. First, estimates of these two variables, together with the combined canopy chlorophyll content (CCC = LCC × LAI), were obtained at the HyPlant spatial resolution and were compared against the in situ measurements. Second, the fine-scale retrieval maps from HyPlant were coarsened to the S3 spatial scale as a reference to assess the quality of the OLCI vegetation products. As an intermediary step, vegetation products extracted from Sentinel-2 data were used to compare retrievals at the in-between spatial resolution of 20 m. For all spatial scales, CCC delivered the most accurate estimates with the smallest prediction error obtained at the 300 m resolution (R2 of 0.74 and RMSE = 26.8 µg cm-2). Results of a scaling analysis suggest that CCC performs well at the different tested spatial resolutions since it presents a linear behavior across scales. LCC, on the other hand, was poorly retrieved at the 300 m scale, showing overestimated values over heterogeneous pixels. The introduction of a new LCC model integrating mixed reflectance spectra in its training enabled to improve by 16% the retrieval accuracy for this variable (RMSE = 10 µg cm-2 for the new model versus RMSE = 11.9 µg cm-2 for the former model).