Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Bioprocess Biosyst Eng ; 47(4): 443-461, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296889

RESUMEN

In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Andamios del Tejido/química
2.
Small ; 19(30): e2206644, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965146

RESUMEN

Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.


Asunto(s)
Nanopartículas , Ingeniería de Tejidos , Ratones , Animales , Estudios de Seguimiento , Tinta , Andamios del Tejido/química , Imagen por Resonancia Magnética/métodos , Hidrogeles/química , Medios de Contraste , Alginatos/química
3.
J Synchrotron Radiat ; 30(Pt 2): 417-429, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891855

RESUMEN

Visualization of low-density tissue scaffolds made from hydrogels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydrogel scaffolds. The influence of key imaging parameters on the image quality of hydrogel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on this basis, those parameters were optimized to improve image quality and to reduce noise level and artifacts. The results illustrate that SR-PBI-HCT imaging shows impressive advantages in avoiding ring artifacts with p = 1.5, E = 30 keV and Np = 500 for the visualization of hydrogel scaffolds in vitro. Furthermore, the results also demonstrate that hydrogel scaffolds can be visualized using SR-PBI-HCT with good contrast while at a low radiation dose, i.e. 342 mGy (voxel size of 26 µm, suitable for in vivo imaging). This paper presents a systematic study on hydrogel scaffold imaging using SR-PBI-HCT and the results reveal that SR-PBI-HCT is a powerful tool for visualizing and characterizing low-density scaffolds with a high image quality in vitro. This work represents a significant advance toward the non-invasive in vivo visualization and characterization of hydrogel scaffolds at a suitable radiation dose.


Asunto(s)
Sincrotrones , Andamios del Tejido , Tomografía Computarizada por Rayos X/métodos , Ingeniería de Tejidos/métodos , Hidrogeles
4.
J Nanobiotechnology ; 20(1): 266, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672826

RESUMEN

Surgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.


Asunto(s)
Ferroptosis , Neoplasias Hepáticas , Nanopartículas , Línea Celular Tumoral , Glutatión , Humanos , Hidrogeles , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/prevención & control , Impresión Tridimensional
5.
Biochem Biophys Res Commun ; 529(4): 1180-1185, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819583

RESUMEN

Volumetric muscle loss and muscle degeneration are conditions for which there are currently no effective treatment options. Human adipose stem cells (hASCs) offer promise in cell-based regenerative therapies to treat muscle damage due to their ability to self-renew and differentiate. However, in the absence of universal culture conditions that yield greater than 15% myogenic differentiation, the clinical potential of these cells is limited. Here we report on the evaluation of two different media recipes, three extracellular matrix (ECM) proteins, and a poly (ethylene glycol) (PEGDMA) hydrogel with a physiologically relevant elasticity to determine how the extracellular chemical and physical environment work together to enhance myogenic differentiation of hASCs. Our results identify a combination of unique biochemical and physical factors that promote myogenesis, laying the groundwork for creating a scaffold and culture medium that will effectively and efficiently direct myogenic differentiation of adult stem cells for clinical applications in the future.


Asunto(s)
Tejido Adiposo/citología , Materiales Biocompatibles/farmacología , Desarrollo de Músculos , Células Madre/citología , Andamios del Tejido/química , Azacitidina/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrogeles/farmacología , Metacrilatos/farmacología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Mioblastos/citología , Mioblastos/efectos de los fármacos , Polietilenglicoles/farmacología , Solubilidad , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo
6.
Macromol Rapid Commun ; 41(18): e2000191, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32783361

RESUMEN

The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner.


Asunto(s)
Celulosa , Hidrogeles , Materiales Biocompatibles , Porosidad , Ingeniería de Tejidos , Andamios del Tejido
7.
Eur J Pharm Sci ; 192: 106659, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052258

RESUMEN

Statins have been long used in tissue engineering, besides their marketed hypolipidemic benefits. The aim of this research was to sustain the release of rosuvastatin calcium from bi-polymeric hydrogel scaffolds. A bi-polymer blend technique was used to enhance the mechanical properties of the fabricated hydrogels. Briefly, hydrogels were prepared via crosslinking gellan gum as the main polymer together with a secondary polymer in the presence of Ca2+. The fabricated hydrogels were assessed in terms of % swelling capacity, hydrolytic degradation and % drug released to determine the most efficient carrier system. The selected hydrogel exhibited a swelling capacity of 131.45±1.49 % following 3 weeks in an aqueous environment with a % weight loss of 15.73±1.86 % after 4 weeks post-equilibrium in aqueous medium. The results ensure a proper window for adequate drug diffusion and nutrient exchange. Sustained release was attained where 94.61±2.77 % of rosuvastatin was released at the 4-week mark. Later, FT-IR and DSC, were carried out and suggested the successful crosslinking and formation of new matrix. SEM images demonstrated the porous surface of the hydrogel while a Young's modulus of 888.558±73.549 kPa indicated the suitability of the hydrogel for soft tissue engineering. In-vivo testing involved implanting the selected hydrogel at precisely surgical cuts in the Achilles tendon of male Wistar Albino rats. Upon visual and microscopic evaluation, enhanced rates of fibrous tissue formation, vascularization and collagen expression were clearly noticed in the treatment group.


Asunto(s)
Hidrogeles , Polisacáridos Bacterianos , Ratas , Animales , Masculino , Rosuvastatina Cálcica , Espectroscopía Infrarroja por Transformada de Fourier , Tendones , Ratas Wistar , Colágeno , Andamios del Tejido
8.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257046

RESUMEN

The demand for regenerative medicine products is growing rapidly in clinical practice. Unfortunately, their use has certain limitations. One of these, which significantly constrains the widespread distribution and commercialization of such materials, is their short life span. For products containing suspensions of cells, this issue can be solved by using cryopreservation. However, this approach is rarely used for multicomponent tissue-engineered products due to the complexity of selecting appropriate cryopreservation protocols and the lack of established criteria for assessing the quality of such products once defrosted. Our research is aimed at developing a cryopreservation protocol for an original hydrogel scaffold with encapsulated MSCs and developing a set of criteria for assessing the quality of their functional activity in vitro. The scaffolds were frozen using two alternative types of cryocontainers and stored at either -40 °C or -80 °C. After cryopreservation, the external state of the scaffolds was evaluated in addition to recording the cell viability, visible changes during subsequent cultivation, and any alterations in proliferative and secretory activity. These observations were compared to those of scaffolds cultivated without cryopreservation. It was shown that cryopreservation at -80 °C in an appropriate type of cryocontainer was optimal for the hydrogels/adipose-derived stem cells (ASCs) tested if it provided a smooth temperature decrease during freezing over a period of at least three hours until the target values of the cryopreservation temperature regimen were reached. It was shown that evaluating a set of indicators, including the viability, the morphology, and the proliferative and secretory activity of the cells, enables the characterization of the quality of a tissue-engineered construct after its withdrawal from cryopreservation, as well as indicating the effectiveness of the cryopreservation protocol.

9.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670750

RESUMEN

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Asunto(s)
Proliferación Celular , Quitosano , Hidrogeles , Liposomas , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Cráneo , Vía de Señalización Wnt , Animales , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacología , Quercetina/farmacología , Quercetina/química , Liposomas/química , Vía de Señalización Wnt/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/metabolismo , Ratas , Regeneración Ósea/efectos de los fármacos , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Diferenciación Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular
10.
Adv Healthc Mater ; : e2303912, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470994

RESUMEN

Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.

11.
J Biomater Sci Polym Ed ; 35(5): 717-755, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38214998

RESUMEN

Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Colágeno/química , Células Madre , Regeneración , Impresión Tridimensional
12.
Sci Rep ; 14(1): 15695, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977824

RESUMEN

Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe3+ ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe3+ concentrations. This innovative two-step process offers high-precision (10 µm) and broad modulus adjusting capability (15.8-345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Humanos , Alginatos/química , Materiales Biocompatibles/química , Resinas Acrílicas/química , Módulo de Elasticidad , Luz
13.
J Biomed Mater Res A ; 112(2): 180-192, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37694883

RESUMEN

Accumulating evidence supports the role of cartilage tissue engineering in cartilage defect repair, but the biological function has yet to be fully explained. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a composite hydrogel of polyvinyl alcohol/nano-hydroxyapatite (PVA/n-HA) to fabricate an appropriate microenvironment for tendon-bone healing after anterior cruciate ligament (ACL) reconstruction. KGN/PVA/n-HA composite hydrogel scaffolds were prepared by in situ synthesis and physical adsorption, followed by characterization under a scanning electron microscope. The scaffolds were transplanted into healthy New Zealand White (NZW) rabbits. It was confirmed that KGN/PVA/n-HA scaffolds were successfully prepared and exhibited good supporting properties and excellent biocompatibility. Unilateral ACL reconstruction was constructed with tendon autograft in NZW rabbits, and the morphology and diameter of collagen fiber were analyzed. The scaffolds were shown to promote ACL growth and collagen fiber formation. Furthermore, microcomputerized tomography analysis and bone formation histology were performed to detect new bone formation. KGN/PVA/n-HA scaffolds effectively alleviated cartilage damage and prevented the occurrence of osteoarthritis. Meanwhile, ligament-bone healing and bone formation were observed in the presence of KGN/PVA/n-HA scaffolds. In conclusion, these results suggest that the KGN/PVA/n-HA scaffolds can facilitate tendon-bone healing after ACL reconstruction and might be considered novel hydrogel biomaterials in cartilage tissue engineering.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Durapatita , Conejos , Animales , Durapatita/farmacología , Alcohol Polivinílico/farmacología , Colágeno , Reconstrucción del Ligamento Cruzado Anterior/métodos , Tendones/cirugía , Hidrogeles/farmacología
14.
Pharmaceutics ; 16(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543266

RESUMEN

This study proposes synthesis and evaluation of gelatin-/alginate-based hydrogel scaffolds reinforced with titanium dioxide (TiO2) nanoparticles which, through their combination with allantoin, quercetin, and caffeic acid, provide multi-target therapy directed on all phases of the wound healing process. These scaffolds provide the simultaneous release of bioactive agents and concurrently support cell/tissue repair through the replicated structure of a native extracellular matrix. The hydrogel scaffolds were synthesized via a crosslinking reaction using EDC as a crosslinker for gelatin. Synthesized hydrogel scaffolds and the effect of TiO2 on their properties were characterized by structural, mechanical, morphological, and swelling properties, and the porosity, wettability, adhesion to skin tissue, and simultaneous release features. The biocompatibility of the scaffolds was tested in vitro on fibroblasts (MRC5 cells) and in vivo (Caenorhabditis elegans) in a survival probe. The scaffolds revealed porous interconnected morphology, porosity of 88.33 to 96.76%, elastic modulus of 1.53 to 4.29 MPa, full hydrophilicity, favorable skin adhesivity, and biocompatibility. The simultaneous release was investigated in vitro indicating dependence on the scaffold's composition and type of bioactive agents. The novel scaffolds designed as multi-target therapy have significant promise for improved wound healing in a beneficial and non-invasive manner.

15.
Bioact Mater ; 40: 244-260, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38973990

RESUMEN

Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.

16.
Adv Healthc Mater ; : e2303972, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692263

RESUMEN

Heart valve disease poses a significant clinical challenge, especially in pediatric populations, due to the inability of existing valve replacements to grow or respond biologically to their microenvironment. Tissue-engineered heart valves (TEHVs) provide a solution by facilitating patient-specific models for self-repair and remodeling. In this study, a 3D-bioprinted TEHV is designed to emulate the trilayer leaflet structure of an aortic valve. A cell-laden hydrogel scaffold made from gelatin methacrylate and polyethylene glycol diacrylate (GelMA/PEGDA) incorporates valvular interstitial-like (VIC-like) cells, being reinforced with a layer of polycaprolactone (PCL). The composition of the hydrogel scaffold remains stable over 7 days, having increased mechanical strength compared to pure GelMA. The scaffold maintains VIC-like cell function and promotes extracellular matrix (ECM) protein expression up to 14 days under two dynamic culture conditions: shear stress and stretching; replicating heart valve behavior within a more physiological-like setting and suggesting remodeling potential via ECM synthesis. This TEHV offers a promising avenue for valve replacements, closely replicating the structural and functional attributes of a native aortic valve, leading to mechanical and biological integration through biomaterial-cellular interactions.

17.
Acta Biomater ; 167: 219-233, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257575

RESUMEN

Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.


Asunto(s)
Fibroínas , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Humanos , Ácido Hialurónico/farmacología , Hidrogeles/química , Fibroínas/farmacología , Dopamina , Biomimética , Andamios del Tejido/química , Regeneración Nerviosa , Traumatismos de la Médula Espinal/terapia , Médula Espinal , Inflamación
18.
Adv Healthc Mater ; 12(16): e2201894, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36349743

RESUMEN

The imaging of hydrogel scaffolds by 19 F magnetic resonance imaging (MRI) represents an attractive tool for straightforward and noninvasive monitoring of their morphology and in vivo fate. However, their further applications are significantly limited by a dilemma of insufficient signal resolution with low 19 F content, and/or hydrophobic aggregation of fluorine moieties-induced signal attenuation with high 19 F content. Herein, a novel label-free fluorinated hydrogel (PFCB) is fabricated with high fluorine content to realize noninvasive monitoring through 19 F MRI under ultrahigh scanning resolution (1 mm of scanning thickness). The integration of a zwitterionic unit into each fluorine moiety completely overcame the hydrophobic aggregation-induced signal attenuation, manifesting as high 19 F content and imaging performance. Importantly, 3D reconstruction of the PFCB hydrogel in vivo can be facilely and accurately performed with background free signals, providing detailed biological information of the implanted hydrogel. Additionally, PFCB hydrogel showed adjustable and high mechanical performance, and exhibited minimum foreign body reaction after implantation. As a proof of concept, PFCB hydrogel could be further applied as gel electrodes and wireless flexible sensors for healthcare monitoring. Overall, such label-free fluorinated PFCB hydrogel is an ideal flexible scaffold for eventual clinical applications integrating 19 F MRI-guided unequivocally 3D reconstruction and healthcare monitoring.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Flúor , Flúor/química , Hidrogeles/química , Imagen por Resonancia Magnética , Interacciones Hidrofóbicas e Hidrofílicas , Imagen por Resonancia Magnética con Fluor-19/métodos
19.
Carbohydr Polym ; 320: 121238, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659799

RESUMEN

The healing of wounds in diabetic patients is a huge challenge issue in clinical medicine due to the disordered immune. Recruiting endogenous cells to play a role in the early stage and timely reducing inflammation to promote healing in the middle or late of injuring are both prerequisites for effective treatment. Here, inspired by natural extracellular matrix, three-dimensional porous polyurethane-hyaluronic acid hybrid hydrogel scaffolds (PUHA) were prepared to repair diabetic wound through activate cell immunity by moderate foreign body reaction, provide cell adhesion growth extracellular matrix of hyaluronic acid (HA) and exhibit anti-inflammatory effect of polyurethane (PU). The interaction between PU and HA alters the compact PU hydrogel into macroporous PUHA hydrogel scaffolds with super-swelling, elastic mechanical properties, and controllable degradation, which are suitable for endogenous cells infiltration, growth and immune activation. Additionally, incorporating with RGD, PUHA hydrogel scaffolds with bioactive physicochemical features can evidently reduce the inflammation and modulate the polarization of macrophage apparently both in vitro and in vivo, mainly through downregulation of cytokine-cytokine receptor interaction genes, leading to reprogramming immune-microenvironment and rapid diabetic wound healing. This method of gathering cells initially and intervening immune-microenvironment in time provides an expected way to design biomaterials for chronic wound healing.


Asunto(s)
Diabetes Mellitus , Ácido Hialurónico , Humanos , Ácido Hialurónico/farmacología , Poliuretanos , Hidrogeles/farmacología , Inflamación , Materiales Biocompatibles
20.
Pharmaceuticals (Basel) ; 16(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37242485

RESUMEN

Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda