Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.524
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(3): 659-675.e18, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215760

RESUMEN

The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.


Asunto(s)
Caenorhabditis elegans , Complejo I de Transporte de Electrón , Hipoxia , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Oxígeno/metabolismo
2.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36893757

RESUMEN

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.


Asunto(s)
Hiperoxia , Enfermedades Mitocondriales , Animales , Humanos , Ratones , Complejo I de Transporte de Electrón/metabolismo , Hiperoxia/metabolismo , Hiperoxia/patología , Pulmón/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Oxígeno/metabolismo
3.
FASEB J ; 38(16): e70012, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39183539

RESUMEN

Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.


Asunto(s)
Exosomas , Hiperoxia , Lesión Pulmonar , Melatonina , Células Madre Mesenquimatosas , MicroARNs , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Exosomas/metabolismo , Lesión Pulmonar/metabolismo , Lesión Pulmonar/etiología , Células Madre Mesenquimatosas/metabolismo , Melatonina/farmacología , Hiperoxia/metabolismo , Hiperoxia/complicaciones , Masculino , Apoptosis , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones Endogámicos C57BL , Estrés Oxidativo , Potencial de la Membrana Mitocondrial
4.
Artículo en Inglés | MEDLINE | ID: mdl-38564376

RESUMEN

RATIONALE: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. OBJECTIVES: To determine and correlate single-cell UC-MSC transcriptomic profile with therapeutic potential. METHODS: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs, control cells of mesenchymal origin) transcriptomes were investigated by single-cell RNA sequencing analysis (scRNA-seq). The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. MEASUREMENTS AND MAIN RESULTS: UC-MSCs showed limited transcriptomic heterogeneity, but were different from HNDFs. Gene ontology enrichment analysis revealed distinct - progenitor-like and fibroblast-like - UC-MSC subpopulations. Only the treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of non-therapeutic cells and associated with decreased lung retention. CONCLUSIONS: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.

5.
J Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197114

RESUMEN

Preclinical work supports a role for the peripheral chemoreceptors in the progression of cardiovascular and metabolic pathologies. In the present study, we examined peripheral chemosensitivity in adults with type 2 diabetes (T2D) and the contribution of the peripheral chemoreceptors to resting cardiovascular and metabolic control. We hypothesized that: (1) adults with T2D exhibit exaggerated peripheral chemoreflex sensitivity; (2) the peripheral chemoreceptors contribute to cardiovascular dysfunction in T2D; and (3) attenuation of peripheral chemoreceptor activity improves glucose tolerance in T2D. Seventeen adults with diagnosed T2D [six males/11 females; aged 54 ± 11 years; glycated haemoglobin (HbA1c) 7.6 ± 1.5%] and 20 controls without T2D (9 males/11 females; aged 49 ± 13 years, HbA1c 5.2 ± 0.4%) participated in the study. The hypoxic ventilatory response (HVR) was assessed as an index of peripheral chemosensitivity. Resting heart rate, blood pressure and minute ventilation were measured when breathing normoxic followed by hyperoxic air (1.0 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) to acutely attenuate peripheral chemoreceptor activity. A subset of participants (n = 9 per group) completed two additional visits [normoxia (0.21 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), hyperoxia (1.0 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ )] where glucose and insulin were measured for 2 h following an oral glucose challenge. HVR was augmented in adults with T2D (-0.84 ± 0.49 L min-1/%) vs. control (-0.48 ± 0.40 L min-1/%, P = 0.021). Attenuation of peripheral chemoreceptor activity decreased heart rate (P < 0.001), mean blood pressure (P = 0.009) and minute ventilation (P = 0.002); any effect of hyperoxia did not differ between groups. There was no effect of hyperoxia on the glucose (control, P = 0.864; T2D, P = 0.982), nor insulin (control, P = 0.763; T2D, P = 0.189) response to the oral glucose challenge. Peripheral chemoreflex sensitivity is elevated in adults with T2D; however, acute attenuation of peripheral chemoreflex activity with hyperoxia does not restore cardiometabolic function. KEY POINTS: Preclinical work supports a role for the peripheral chemoreceptors in the progression of cardiovascular and metabolic pathologies. In the present study, we examined peripheral chemosensitivity in adults with type 2 diabetes and the contribution of the peripheral chemoreceptors to resting cardiovascular control and glucose tolerance. We observed elevated peripheral chemoreflex sensitivity in adults with diabetes which was associated with glycaemic control (i.e. glycated haemoglobin). Notably, acute attenuation of peripheral chemoreflex activity with hyperoxia did not restore cardiometabolic function in the individuals studied.

6.
J Physiol ; 602(10): 2265-2285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632887

RESUMEN

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Animales Recién Nacidos , Proteínas de Unión al Calcio , Claudina-5 , Células Endoteliales , Hiperoxia , Receptores Notch , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/crecimiento & desarrollo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Claudina-5/metabolismo , Claudina-5/genética , Células Endoteliales/metabolismo , Hiperoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Receptores Notch/genética , Transducción de Señal
7.
Stroke ; 55(6): 1468-1476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747162

RESUMEN

BACKGROUND: Normobaric hyperoxia (NBO) has neuroprotective effects in acute ischemic stroke. Thus, we aimed to identify the optimal NBO treatment duration combined with endovascular treatment. METHODS: This is a single-center, randomized controlled, open-label, blinded-end point dose-escalation clinical trial. Patients with acute ischemic stroke who had an indication for endovascular treatment at Tianjin Huanhu Hospital were randomly assigned to 4 groups (1:1 ratio) based on NBO therapy duration: (1) control group (1 L/min oxygen for 4 hours); (2) NBO-2h group (10 L/min for 2 hours); (3) NBO-4h group (10 L/min for 4 hours); and (4) NBO-6h group (10 L/min for 6 hours). The primary outcome was cerebral infarction volume at 72 hours after randomization using an intention-to-treat analysis model. The primary safety outcome was the 90-day mortality rate. RESULTS: Between June 2022 and September 2023, 100 patients were randomly assigned to the following groups: control group (n=25), NBO-2h group (n=25), NBO-4h group (n=25), and NBO-6h group (n=25). The 72-hour cerebral infarct volumes were 39.4±34.3 mL, 30.6±30.1 mL, 19.7±15.4 mL, and 22.6±22.4 mL, respectively (P=0.013). The NBO-4h and NBO-6h groups both showed statistically significant differences (adjusted P values: 0.011 and 0.027, respectively) compared with the control group. Compared with the control group, both the NBO-4h and NBO-6h groups showed significant differences (P<0.05) in the National Institutes of Health Stroke Scale scores at 24 hours, 72 hours, and 7 days, as well as in the change of the National Institutes of Health Stroke Scale scores from baseline to 24 hours. Additionally, there were no significant differences among the 4 groups in terms of 90-day mortality rate, symptomatic intracranial hemorrhage, early neurological deterioration, or severe adverse events. CONCLUSIONS: The effectiveness of NBO therapy was associated with oxygen administration duration. Among patients with acute ischemic stroke who underwent endovascular treatment, NBO therapy for 4 and 6 hours was found to be more effective. Larger-scale multicenter studies are needed to validate these findings. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05404373.


Asunto(s)
Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Procedimientos Endovasculares/métodos , Anciano , Accidente Cerebrovascular Isquémico/terapia , Hiperoxia , Resultado del Tratamiento , Terapia Combinada , Terapia por Inhalación de Oxígeno/métodos
8.
J Cell Biochem ; : e30632, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014931

RESUMEN

Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.

9.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L52-L64, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987780

RESUMEN

Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.


Asunto(s)
Asma , Sulfuro de Hidrógeno , Hiperoxia , Humanos , Embarazo , Niño , Animales , Femenino , Ratones , Masculino , Hiperoxia/metabolismo , Animales Recién Nacidos , Sulfuro de Hidrógeno/farmacología , Antioxidantes/farmacología , Pulmón/metabolismo , Asma/patología
10.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L269-L281, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38887793

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe lung disease of high mortality (30-50%). Patients require lifesaving supplemental oxygen therapy; however, hyperoxia can induce pulmonary inflammation and cellular damage. Although alveolar macrophages (AMs) are essential for lung immune homeostasis, they become compromised during inflammatory lung injury. To combat this, stem cell-derived alveolar-like macrophages (ALMs) are a prospective therapeutic for lung diseases like ARDS. Using in vitro and in vivo approaches, we investigated the impact of hyperoxia on murine ALMs during acute inflammation. In vitro, ALMs retained their viability, growth, and antimicrobial abilities when cultured at 60% O2, whereas they die at 90% O2. In contrast, ALMs instilled in mouse lungs remained viable during exposure of mice to 90% O2. The ability of the delivered ALMs to phagocytose Pseudomonas aeruginosa was not impaired by exposure to 60 or 90% O2. Furthermore, ALMs remained immunologically stable in a murine model of LPS-induced lung inflammation when exposed to 60 and 90% O2 and effectively attenuated the accumulation of CD11b+ inflammatory cells in the airways. These results support the potential use of ALMs in patients with ARDS receiving supplemental oxygen therapy.NEW & NOTEWORTHY The current findings support the prospective use of stem cell-derived alveolar-like macrophages (ALMs) as a therapeutic for inflammatory lung disease such as acute respiratory distress syndrome (ARDS) during supplemental oxygen therapy where lungs are exposed to high levels of oxygen. Alveolar-like macrophages directly delivered to mouse lungs were found to remain viable, immunologically stable, phagocytic toward live Pseudomonas aeruginosa, and effective in reducing CD11b+ inflammatory cell numbers in LPS-challenged lungs during moderate and extreme hyperoxic exposure.


Asunto(s)
Modelos Animales de Enfermedad , Hiperoxia , Lipopolisacáridos , Macrófagos Alveolares , Neumonía , Pseudomonas aeruginosa , Animales , Hiperoxia/complicaciones , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Macrófagos Alveolares/metabolismo , Ratones , Neumonía/patología , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/terapia , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Fagocitosis , Masculino , Pulmón/patología , Pulmón/inmunología
11.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772902

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Asunto(s)
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales , Hiperoxia , Macrófagos Alveolares , Animales , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Células Progenitoras Endoteliales/trasplante , Células Progenitoras Endoteliales/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Quimiocina CXCL12/metabolismo , Hiperoxia/terapia , Ratones Endogámicos C57BL , Animales Recién Nacidos , Pulmón/patología , Pulmón/metabolismo , Humanos , Traslado Adoptivo/métodos , Trasplante de Células Madre/métodos
12.
J Neurophysiol ; 132(2): 322-334, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38863429

RESUMEN

Fentanyl is the leading contributor to drug overdose deaths in the United States. Its potency, rapid onset of action, and lack of effective reversal treatment make the drug much more lethal than other opioids. Although it is understood that fentanyl is dangerous at higher doses, the literature surrounding fentanyl's physiological effects remains contradictory at lower doses. To explore this discrepancy, we designed a study incorporating electrochemical assessment of oxygen in the brain (nucleus accumbens) and subcutaneous space, multisite thermorecording (brain, skin, muscle), and locomotor activity at varying doses of fentanyl (1.0, 3.0, 10, 30, and 90 µg/kg) in rats. In the nucleus accumbens, lower doses of fentanyl (3.0 and 10 µg/kg) led to an increase in oxygen levels while higher doses (30 and 90 µg/kg) led to a biphasic pattern, with an initial dose-dependent decrease followed by an increase. In the subcutaneous space, oxygen decreases started to appear at relatively lower doses (>3 µg/kg), had shorter onset latencies, and were stronger and prolonged. In the temperature experiment, lower doses of fentanyl (1.0, 3.0, and 10 µg/kg) led to an increase in brain, skin, and muscle temperatures, while higher doses (30 and 90 µg/kg) resulted in a dose-dependent biphasic temperature change, with an increase followed by a prolonged decrease. We also compared oxygen and temperature responses induced by fentanyl over six consecutive days and found no evidence of tolerance in both parameters. In conclusion, we report that fentanyl's effects are highly dose-dependent, drawing attention to the importance of better characterization to adequately respond in emergent cases of illicit fentanyl misuse.NEW & NOTEWORTHY By using electrochemical oxygen sensors in freely moving rats, we show that intravenous fentanyl induces opposite changes in brain oxygen at varying doses, increasing at lower doses (<10 µg/kg) and inducing a biphasic response, decrease followed by increase, at higher doses (>10-90 µg/kg). In contrast, fentanyl-induced dose-dependent oxygen decreases in the subcutaneous space. We consider the mechanisms underlying distinct oxygen responses in the brain and periphery and discuss naloxone's role in alleviating fentanyl-induced brain hypoxia.


Asunto(s)
Analgésicos Opioides , Relación Dosis-Respuesta a Droga , Fentanilo , Ratas Sprague-Dawley , Fentanilo/administración & dosificación , Fentanilo/farmacología , Animales , Masculino , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Ratas , Oxígeno/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 326(6): H1544-H1549, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700471

RESUMEN

Numerous studies have shown that oxidative stress plays an important role in peripheral artery disease (PAD). Prior reports suggested autonomic dysfunction in PAD. We hypothesized that responses of the autonomic nervous system and coronary tone would be impaired in patients with PAD during exposure to acute hyperoxia, an oxidative stressor. In 20 patients with PAD and 16 healthy, sex- and age-matched controls, beat-by-beat heart rate (HR, from ECG) and blood pressure (BP, with Finometer) were recorded for 10 min during room air breathing and 5 min of hyperoxia. Cardiovagal baroreflex sensitivity and HR variability (HRV) were evaluated as measures of autonomic function. Transthoracic coronary echocardiography was used to assess peak coronary blood flow velocity (CBV) in the left anterior descending coronary artery. Cardiovagal baroreflex sensitivity at rest was lower in PAD than in healthy controls. Hyperoxia raised BP solely in the patients with PAD, with no change observed in healthy controls. Hyperoxia induced an increase in cardiac parasympathetic activity assessed by the high-frequency component of HRV in healthy controls but not in PAD. Indices of parasympathetic activity were lower in PAD than in healthy controls throughout the trial as well as during hyperoxia. Hyperoxia induced coronary vasoconstriction in both groups, while the coronary perfusion time fraction was lower in PAD than in healthy controls. These results suggest that the response in parasympathetic activity to hyperoxia (i.e., oxidative stress) is blunted and the coronary perfusion time is shorter in patients with PAD.NEW & NOTEWORTHY Patients with peripheral artery disease (PAD) showed consistently lower parasympathetic activity and blunted cardiovagal baroreflex sensitivity compared with healthy individuals. Notably, hyperoxia, which normally boosts parasympathetic activity in healthy individuals, failed to induce this response in patients with PAD. These data suggest altered autonomic responses during hyperoxia in PAD.


Asunto(s)
Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Hiperoxia , Enfermedad Arterial Periférica , Humanos , Masculino , Femenino , Hiperoxia/fisiopatología , Anciano , Enfermedad Arterial Periférica/fisiopatología , Persona de Mediana Edad , Circulación Coronaria , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Sistema Nervioso Autónomo/fisiopatología , Estudios de Casos y Controles , Estrés Oxidativo
14.
Proc Biol Sci ; 291(2025): 20232557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889794

RESUMEN

Hyperoxia has been shown to expand the aerobic capacity of some fishes, although there have been very few studies examining the underlying mechanisms and how they vary across different exposure durations. Here, we investigated the cardiorespiratory function of yellowtail kingfish (Seriola lalandi) acutely (~20 h) and chronically (3-5 weeks) acclimated to hyperoxia (~200% air saturation). Our results show that the aerobic performance of kingfish is limited in normoxia and increases with environmental hyperoxia. The aerobic scope was elevated in both hyperoxia treatments driven by a ~33% increase in maximum O2 uptake (MO2max), although the mechanisms differed across treatments. Fish acutely transferred to hyperoxia primarily elevated tissue O2 extraction, while increased stroke volume-mediated maximum cardiac output was the main driving factor in chronically acclimated fish. Still, an improved O2 delivery to the heart in chronic hyperoxia was not the only explanatory factor as such. Here, maximum cardiac output only increased in chronic hyperoxia compared with normoxia when plastic ventricular growth occurred, as increased stroke volume was partly enabled by an ~8%-12% larger relative ventricular mass. Our findings suggest that hyperoxia may be used long term to boost cardiorespiratory function potentially rendering fish more resilient to metabolically challenging events and stages in their life cycle.


Asunto(s)
Consumo de Oxígeno , Perciformes , Animales , Perciformes/fisiología , Hiperoxia/fisiopatología , Aclimatación , Oxígeno/metabolismo , Gasto Cardíaco
15.
FASEB J ; 37(7): e23001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249913

RESUMEN

Cardiac arrest (CA) and concomitant post-CA syndrome lead to a lethal condition characterized by systemic ischemia-reperfusion injury. Oxygen (O2 ) supply during cardiopulmonary resuscitation (CPR) is the key to success in resuscitation, but sustained hyperoxia can produce toxic effects post CA. However, only few studies have investigated the optimal duration and dosage of O2 administration. Herein, we aimed to determine whether high concentrations of O2 at resuscitation are beneficial or harmful. After rats were resuscitated from the 10-min asphyxia, mechanical ventilation was restarted at an FIO2 of 1.0 or 0.3. From 10 min after initiating CPR, FIO2 of both groups were maintained at 0.3. Bio-physiological parameters including O2 consumption (VO2 ) and mRNA gene expression in multiple organs were evaluated. The FIO2 0.3 group decreased VO2 , delayed the time required to achieve peak MAP, lowered ejection fraction (75.1 ± 3.3% and 59.0 ± 5.7% with FIO2 1.0 and 0.3, respectively; p < .05), and increased blood lactate levels (4.9 ± 0.2 mmol/L and 5.6 ± 0.2 mmol/L, respectively; p < .05) at 10 min after CPR. FIO2 0.3 group had significant increases in hypoxia-inducible factor, inflammatory, and apoptosis-related mRNA gene expression in the brain. Likewise, significant upregulations of hypoxia-inducible factor and apoptosis-related gene expression were observed in the FIO2 0.3 group in the heart and lungs. Insufficient O2 supplementation in the first 10 min of resuscitation could prolong ischemia, and may result in unfavorable biological responses 2 h after CA. Faster recovery from the impairment of O2 metabolism might contribute to the improvement of hemodynamics during the early post-resuscitation phase; therefore, it may be reasonable to provide the maximum feasible O2 concentrations during CPR.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Ratas , Animales , Oxígeno , Paro Cardíaco/terapia , Hemodinámica , Hipoxia , Modelos Animales de Enfermedad
16.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873706

RESUMEN

Oxygen availability during development is known to impact the development of insect respiratory and metabolic systems. Drosophila adult tracheal density exhibits developmental plasticity in response to hypoxic or hyperoxic oxygen levels during larval development. Respiratory systems of insects with higher aerobic demands, such as those that are facultative endotherms, may be even more responsive to oxygen levels above or below normoxia during development. The moth Manduca sexta is a large endothermic flying insect that serves as a good study system to start answering questions about developmental plasticity. In this study, we examined the effect of developmental oxygen levels (hypoxia: 10% oxygen, and hyperoxia: 30% oxygen) on the respiratory and metabolic phenotype of adult moths, focusing on morphological and physiological cellular and intercellular changes in phenotype. Mitochondrial respiration rate in permeabilized and isolated flight muscle was measured in adults. We found that permeabilized flight muscle fibers from the hypoxic group had increased mitochondrial oxygen consumption, but this was not replicated in isolated flight muscle mitochondria. Morphological changes in the trachea were examined using confocal imaging. We used transmission electron microscopy to quantify muscle and mitochondrial density in the flight muscle. The respiratory morphology was not significantly different between developmental oxygen groups. These results suggest that the developing M. sexta trachea and mitochondrial respiration have limited developmental plasticity when faced with rearing at 10% or 30% oxygen.


Asunto(s)
Manduca , Mitocondrias , Oxígeno , Tráquea , Animales , Manduca/crecimiento & desarrollo , Manduca/fisiología , Oxígeno/metabolismo , Tráquea/metabolismo , Tráquea/crecimiento & desarrollo , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Larva/crecimiento & desarrollo , Mitocondrias Musculares/metabolismo
17.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873724

RESUMEN

Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.


Asunto(s)
Regulación de la Temperatura Corporal , Vuelo Animal , Larva , Manduca , Oxígeno , Animales , Manduca/fisiología , Manduca/crecimiento & desarrollo , Vuelo Animal/fisiología , Regulación de la Temperatura Corporal/fisiología , Oxígeno/metabolismo , Larva/fisiología , Larva/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/fisiología
18.
J Surg Res ; 301: 287-295, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996719

RESUMEN

INTRODUCTION: Hypoxia is a significant cause of secondary insult in the critically ill trauma or surgical patient. The cause of increased mortality following a brief period of hypoxia is not well understood. The aim of this study is to determine the effect of acute, isolated deviations in oxygen concentration on proinflammatory cytokine release and markers of endothelial stress in a murine model. METHODS: Mice were randomized to either control, hypoxia, or hyperoxia group. The control group was exposed to room air for 60 min, the hyperoxia group was exposed to 70% fraction of inspired oxygen, and the hypoxia group was exposed to 10% fraction of inspired oxygen for 60 min. Whole blood collection was completed via cardiac puncture. Serum concentrations of proinflammatory cytokines and endothelial stress markers were analyzed via enzyme-linked immunosorbent assay. RESULTS: Following exposure to hypoxic conditions, there was a significant increase in interleukin (IL)-1α (IL-1 α), IL-1 ß, IL-3, IL-4, IL-6, IL-10, tumor necrosis factor α . Following exposure to hyperoxic conditions, there was a significant increase in monocyte chemoattractant protein-1 and regulated upon activation normal T cell expressed and presumably secreted, as well as a significant decrease in IL-12, and IL-17. No clinically significant difference was noted in serum concentration of endothelial stress markers between the treatment groups. DISCUSSION: Exposure to oxygen extremes induces systemic inflammation as measured by proinflammatory cytokines in a murine model. Hyperoxia also demonstrates the ability to downregulate certain inflammatory pathways while inducing others. No effect on serum concentration of endothelial stress markers is observed following acute, isolated hypoxic or hyperoxic conditions.

19.
Exp Lung Res ; 50(1): 127-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973401

RESUMEN

INTRODUCTION: Bronchopulmonary dysplasia (BPD) impacts life expectancy and long-term quality of life. Currently, BPD mouse models exposed to high oxygen are frequently used, but to reevaluate their relevance to human BPD, we attempted an assessment using micro-computed tomography (µCT). METHODS: Newborn wildtype male mice underwent either 21% or 95% oxygen exposure for 4 days, followed until 8 wk. Weekly µCT scans and lung histological evaluations were performed independently. RESULTS: Neonatal hyperoxia for 4 days hindered lung development, causing alveolar expansion and simplification. Histologically, during the first postnatal week, the exposed group showed a longer mean linear intercept, enlarged alveolar area, and a decrease in alveolar number, diminishing by week 4. Weekly µCT scans supported these findings, revealing initially lower lung density in newborn mice, increasing with age. However, the high-oxygen group displayed higher lung density initially. This difference diminished over time, with no significant contrast to controls at 3 wk. Although no significant difference in total lung volume was observed at week 1, the high-oxygen group exhibited a decrease by week 2, persisting until 8 wk. CONCLUSION: This study highlights µCT-detected changes in mice exposed to high oxygen. BPD mouse models might follow a different recovery trajectory than humans, suggesting the need for further optimization.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar , Hiperoxia , Pulmón , Oxígeno , Microtomografía por Rayos X , Animales , Microtomografía por Rayos X/métodos , Ratones , Masculino , Displasia Broncopulmonar/diagnóstico por imagen , Oxígeno/metabolismo , Hiperoxia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Modelos Animales de Enfermedad , Alveolos Pulmonares/diagnóstico por imagen , Ratones Endogámicos C57BL
20.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda