Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Cell Physiol ; 65(9): 1363-1376, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957969

RESUMEN

The INDUCER OF CBF EXPRESSION 1/C-REPEAT BINDING FACTOR (ICE1/CBF) pathway plays a crucial role in plant responses to cold stress, impacting growth and development. Here, we demonstrated that ATBS1-INTERACTING FACTOR 2 (AIF2), a non-DNA-binding basic helix-loop-helix transcription factor, positively regulates freezing tolerance through the ICE1/CBF-induced cold tolerance pathway in Arabidopsis. Cold stress transcriptionally upregulated AIF2 expression and induced AIF2 phosphorylation, thereby stabilizing the AIF2 protein during early stages of cold acclimation. The AIF2 loss-of-function mutant, aif2-1, exhibited heightened sensitivity to freezing before and after cold acclimation. In contrast, ectopic expression of AIF2, but not the C-terminal-deleted AIF2 variant, restored freezing tolerance. AIF2 enhanced ICE1 stability during cold acclimation and promoted the transcriptional expression of CBFs and downstream cold-responsive genes, ultimately enhancing plant tolerance to freezing stress. MITOGEN-ACTIVATED PROTEIN KINASES 3 and 6 (MPK3/6), known negative regulators of freezing tolerance, interacted with and phosphorylated AIF2, subjecting it to protein degradation. Furthermore, transient co-expression of MPK3/6 with AIF2 and ICE1 downregulated AIF2/ICE1-induced transactivation of CBF2 expression. AIF2 interacted preferentially with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and MPK3/6 during the early and later stages of cold acclimation, respectively, thereby differentially regulating AIF2 activity in a cold acclimation time-dependent manner. Moreover, AIF2 acted additively in a gain-of-function mutant of BRASSINAZOLE-RESISTANT 1 (BZR1; bzr1-1D) and a triple knockout mutant of BIN2 and its homologs (bin2bil1bil2) to induce CBFs-mediated freezing tolerance. This suggests that cold-induced AIF2 coordinates freezing tolerance along with BZR1 and BIN2, key positive and negative components, respectively, of brassinosteroid signaling pathways.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Congelación , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aclimatación/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fosforilación , Transducción de Señal , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología
2.
Plant Cell Environ ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248548

RESUMEN

The freezing temperature greatly limits the growth, development and productivity of plants. The C-repeat/DRE binding factor (CBF) plays a major role in cold acclimation, enabling plants to increase their freezing tolerance. Notably, the INDUCER OF CBF EXPRESSION1 (ICE1) protein has garnered attention for its pivotal role in bolstering plants' resilience against freezing through transcriptional upregulation of DREB1A/CBF3. However, the research on the interaction between ICE1 and other transcription factors and its function in regulating cold stress tolerance is largely inadequate. In this study, we found that a R2R3 MYB transcription factor CDC5 interacts with ICE1 and regulates the expression of CBF3 by recruiting RNA polymerase II, overexpression of ICE1 can complements the freezing deficient phenotype of cdc5 mutant. CDC5 increases the expression of CBF3 in response to freezing. Furthermore, CDC5 influences the expression of CBF3 by altering the chromatin status through H3K4me3 and H3K27me3 modifications. Our work identified a novel component that regulates CBF3 transcription in both ICE1-dependent and ICE1-independent manner, improving the understanding of the freezing signal transduction in plants.

3.
J Exp Bot ; 75(7): 1887-1902, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079376

RESUMEN

Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.


Asunto(s)
Arabidopsis , Brassica , Respuesta al Choque por Frío , Glutatión Transferasa/genética , Fitomejoramiento , Brassica/genética , Regulación de la Expresión Génica de las Plantas
4.
J Integr Plant Biol ; 66(8): 1801-1819, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940322

RESUMEN

In flowering plants, sexual reproductive success depends on the production of viable pollen grains. However, the mechanisms by which QUA QUINE STARCH (QQS) regulates pollen development and how transcriptional activators facilitate the transcription of QQS in this process remain poorly understood. Here, we demonstrate that INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, acts as a key transcriptional activator and positively regulates QQS expression to increase pollen germination and viability in Arabidopsis thaliana by interacting with INDETERMINATE DOMAIN14 (IDD14). In our genetic and biochemical experiments, overexpression of ICE1 greatly promoted both the activation of QQS and high pollen viability mediated by QQS. IDD14 additively enhanced ICE1 function by promoting the binding of ICE1 to the QQS promoter. In addition, mutation of ICE1 significantly repressed QQS expression; the impaired function of QQS and the abnormal anther dehiscence jointly affected pollen development of the ice1-2 mutant. Our results also showed that the enhancement of pollen activity by ICE1 depends on QQS. Furthermore, QQS interacted with CUT1, the key enzyme for long-chain lipid biosynthesis. This interaction both promoted CUT1 activity and regulated pollen lipid metabolism, ultimately determining pollen hydration and fertility. Our results not only provide new insights into the key function of QQS in promoting pollen development by regulating pollen lipid metabolism, but also elucidate the mechanism that facilitates the transcription of QQS in this vital developmental process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Polen , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Polen/crecimiento & desarrollo , Polen/genética , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Germinación/genética , Germinación/efectos de los fármacos , Almidón/metabolismo , Unión Proteica/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Factores de Transcripción
5.
New Phytol ; 238(6): 2440-2459, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922399

RESUMEN

Previous discovering meticulously illustrates the post-translational modifications and protein stability regulation of ICE1 and their role in cold stress. However, the studies on the interaction of ICE1 with other transcription factors, and their function in modulation cold stress tolerance, as well as in the transition between cold stress and growth are largely insufficient. In this work, we found that maltose binding protein (MBP) 43 directly binds to the promoters of CBF genes to repress their expression, thereby negatively regulating freezing tolerance. Biochemical and genetic analyses showed that MYB43 interacts and antagonizes with ICE1 to regulate the expression of CBF genes and plant's freezing stress tolerance. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) accumulates under cold stress and promotes MYB43 protein degradation; however, when cold stress disappears, PRL1 restores normal protein levels, causing MYB43 protein to re-accumulate to normal levels. Furthermore, PRL1 positively regulates freezing tolerance by promoting degradation of MYB43 to attenuate its repression of CBF genes and antagonism with ICE1. Thus, our study reveals that MYB43 inhibits CBF genes expression under normal growth condition, while PRL1 promotes MYB43 protein degradation to attenuate its repression of CBF genes and antagonism with ICE1, and thereby to the precise modulation of plant cold stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Congelación , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203199

RESUMEN

Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.


Asunto(s)
Juglans , Juglans/genética , Factores de Transcripción/genética , Nueces , Frío , Temperatura
7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047009

RESUMEN

Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.


Asunto(s)
Phoeniceae , Silicio , Silicio/farmacología , Silicio/metabolismo , Phoeniceae/genética , Phoeniceae/metabolismo , Antioxidantes/farmacología , Temperatura , Estrés Oxidativo
8.
J Exp Bot ; 73(3): 980-997, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34555166

RESUMEN

Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.


Asunto(s)
Malus , Proteínas de Plantas , Factores de Transcripción , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
New Phytol ; 229(5): 2707-2729, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119890

RESUMEN

The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.


Asunto(s)
Respuesta al Choque por Frío , Malus , Proteínas de Plantas/genética , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/fisiología , Oxilipinas , Ubiquitinación
10.
Plant J ; 98(2): 277-290, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30570804

RESUMEN

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endospermo/metabolismo , Latencia en las Plantas/fisiología , Plantones/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Fenotipo , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/genética , Semillas/genética , Transducción de Señal , Factores de Transcripción/genética
11.
Plant Mol Biol ; 104(6): 575-582, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33000386

RESUMEN

KEY MESSAGE: In the ros1-defective mutant, DREB1A repression by the transgene-induced promoter methylation of ice1-1 became inheritable across generations even in the absence of the causative transgene NICE1. Transgene silencing (TGS) is a widely observed event during plant bioengineering, which is presented as a gradual decrease in ectopic gene expression across generations and occasionally coupled with endogenous gene silencing based on DNA sequence similarity. TGS is known to be established by guided DNA methylation machinery. However, the machinery underlying gene recovery from TGS has not been fully elucidated. We previously reported that in ice1-1 outcross descendants, the expressional repression and recovery of DREB1A/CBF3 were instantly achieved by a newly discovered NICE1 transgene, instead of the formerly proposed ice1-1 mutation in the ICE1 gene. The plants harboring NICE1 produced small RNAs targeting and causing the DREB1A promoter to be hypermethylated and silenced. To analyze the role of the plant-specific active DNA demethylase REPRESSOR OF SILENCING 1 (ROS1) in instant DREB1A recovery, we propagated the NICE1-segregating population upon ros1 dysfunction and evaluated the gene expression and DNA methylation levels of DREB1A through generations. Our results showed that the epigenetic DREB1A repression was substantially sustained in subsequent generations even without NICE1 and stably inherited across generations. Consistent with the gene expression results, only incomplete DNA methylation removal was detected in the same generations. These results indicate that a novel inheritable epiallele emerged by the ros1 dysfunction. Overall, our study reveals the important role of ROS1 in the inheritability of TGS-associated gene repression.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN , ADN de Plantas/metabolismo , Patrón de Herencia
12.
Plant Cell Environ ; 43(6): 1394-1403, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32092164

RESUMEN

Solidago canadensis, originating from the temperate region of North America, has expanded southward to subtropical regions through polyploidization. Here we investigated whether freezing tolerance of S. canadensis was weakened during expansion. Measurement of the temperature causing 50% ruptured cells (LT50 ) in 35 S. canadensis populations revealed ploidy-related differentiation in freezing tolerance. Freezing tolerance was found to decrease with increasing ploidy. The polyploid populations of S. canadensis had lower ScICE1 gene expression levels but more ScICE1 gene copies than the diploids. Furthermore, more DNA methylation sites in the ScICE1 gene promoter were detected in the polyploids than in the diploids. The results suggest that promoter methylation represses the expression of multi-copy ScICE1 genes, leading to weaker freezing tolerance in polyploid S. canadensis compared to the diploids. The study provides empirical evidence that DNA methylation regulates expression of the gene copies and supports polyploidization-driven adaptation to new environments.


Asunto(s)
Adaptación Fisiológica , Congelación , Poliploidía , Solidago/genética , Solidago/fisiología , Adaptación Fisiológica/genética , Metilación de ADN/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética
13.
J Exp Bot ; 71(4): 1475-1490, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31783407

RESUMEN

ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic helix-loop-helix (bHLH) transcription factor. We demonstrated that AIF2 retards dark-triggered and brassinosteroid (BR)-induced leaf senescence in Arabidopsis thaliana. Dark-triggered BR synthesis and the subsequent activation of BRASSINAZOLE RESISTANT 1 (BZR1), a BR signaling positive regulator, result in BZR1 binding to the AIF2 promoter in a dark-dependent manner, reducing AIF2 transcript levels and accelerating senescence. BR-induced down-regulation of AIF2 protein stability partly contributes to the progression of dark-induced leaf senescence. Furthermore, AIF2 interacts with INDUCER OF CBF EXPRESSION 1 (ICE1) via their C-termini. Formation of the AIF2-ICE1 complex and subsequent up-regulation of C-REPEAT BINDING FACTORs (CBFs) negatively regulates dark-triggered, BR-induced leaf senescence. This involves antagonistic down-regulation of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), modulated through AIF2-dependent inhibition of ICE1's binding to the promoter. PIF4-dependent activities respond to dark-induced early senescence and may promote BR synthesis and BZR1 activation to suppress AIF2 and accelerate dark-induced senescence. Taken together, these findings suggest a coordination of AIF2 and ICE1 functions in maintaining stay-green traits.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Brasinoesteroides , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción
14.
J Exp Bot ; 68(11): 2933-2949, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28486617

RESUMEN

The ubiquitination system plays important roles in the degradation and modification of substrate proteins. In this study, we characterize a putative U-box type E3 ubiquitin ligase gene, VpPUB24 (plant U-box protein 24), from Chinese wild grapevine, Vitis pseudoreticulata accession Baihe-35-1. We show that VpPUB24 is induced by a number of stresses, especially cold treatment. Real-time PCR analysis indicated that the PUB24 transcripts were increased after cold stress in different grapevine species, although the relative expression level was different. In grapevine protoplasts, we found that VpPUB24 was expressed at a low level at 22 °C but accumulated rapidly following cold treatment. A yeast two-hybrid assay revealed that VpPUB24 interacted physically with VpICE1. Further experiments indicated that VpICE1 is targeted for degradation via the 26S proteasome and that the degradation is accelerated by VpHOS1, and not by VpPUB24. Immunoblot analyses indicated that VpPUB24 promotes the accumulation of VpICE1 and suppresses the expression of VpHOS1 to regulate the abundance of VpICE1. Furthermore, VpICE1 promotes transcription of VpPUB24 at low temperatures. We also found that VpPUB24 interacts with VpHOS1 in a yeast two-hybrid assay. Additionally, over-expression of VpPUB24 in Arabidopsis thaliana enhanced cold tolerance. Collectively, our results suggest that VpPUB24 interacts with VpICE1 to play a role in cold stress.


Asunto(s)
Aclimatación/genética , Frío , Genes de Plantas , Ubiquitina-Proteína Ligasas/genética , Vitis/genética , Arabidopsis/genética , Secuencia Conservada , Congelación , Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Proteolisis , Estrés Fisiológico/genética , Técnicas del Sistema de Dos Híbridos , Vitis/enzimología , Vitis/fisiología
15.
Genome ; 60(9): 762-769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28683204

RESUMEN

Cold poses major physiological challenges to plants, especially long-lived trees. In trees occurring along variable temperature clines, the expected direction and consequences of selection on cold acclimation ability and freezing tolerance are not straightforward. Here we estimated selection in cold acclimation genes at two evolutionary timescales in all seven species of the American live oaks (Quercus subsection Virentes). Two cold response candidate genes were chosen: ICE1, a key gene in the cold acclimation pathway, and HOS1, which modulates cold response by negatively regulating ICE1. Two housekeeping genes, GAPDB and CHR11, were also analyzed. At the shallow evolutionary timescale, we demonstrate that HOS1 experienced recent balancing selection in the two most broadly distributed species, Q. virginiana and Q. oleoides. At a deeper evolutionary scale, a codon-based model of evolution revealed the signature of negative selection in ICE1. In contrast, three positively selected codons have been identified in HOS1, possibly a signature of the diversification of Virentes into warmer climates from a freezing adapted lineage of oaks. Our findings indicate that evolution has favored diversity in cold tolerance modulation through balancing selection in HOS1 while maintaining core cold acclimation ability, as evidenced by purifying selection in ICE1.


Asunto(s)
Evolución Molecular , Quercus/genética , Selección Genética , Termotolerancia/genética , Codón , Frío , Frecuencia de los Genes , Genes de Plantas , Variación Genética , Filogenia
16.
Plant J ; 84(1): 29-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248809

RESUMEN

Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold-activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1-FLC-SOC1 signaling network contributes to the fine-tuning of flowering during changing seasons.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Transducción de Señal , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo
17.
Am J Med Genet A ; 170(3): 583-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26601658

RESUMEN

Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations.


Asunto(s)
Trastorno Autístico/genética , Cateninas/genética , Deleción Cromosómica , Cromosomas Humanos Par 5 , Síndrome del Maullido del Gato/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Factores de Elongación de Péptidos/genética , Adulto , Trastorno Autístico/diagnóstico , Trastorno Autístico/patología , Cateninas/deficiencia , Niño , Preescolar , Puntos de Rotura del Cromosoma , Síndrome del Maullido del Gato/diagnóstico , Síndrome del Maullido del Gato/patología , Facies , Femenino , Dosificación de Gen , Genes Dominantes , Estudios de Asociación Genética , Heterogeneidad Genética , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Proteínas de la Membrana/deficiencia , Análisis por Micromatrices , Proteínas del Tejido Nervioso/deficiencia , Linaje , Factores de Elongación de Péptidos/deficiencia , Fenotipo , Semaforinas , Catenina delta
18.
Plant Mol Biol ; 89(1-2): 187-201, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26311645

RESUMEN

During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1-CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE-CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Factores de Transcripción/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Retroalimentación Fisiológica/fisiología , Congelación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitinación
19.
Semin Ophthalmol ; 38(6): 529-536, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36855272

RESUMEN

The use of microinvasive invasive glaucoma surgery (MIGS) in the treatment of glaucoma has increased exponentially over the last 10 years. However, practice patterns vary widely given the relative newness of these technologies. Some surgeons perform two or more MIGS simultaneously, such as those that target aqueous production and those that target aqueous outflow. These combined MIGS (cMIGS) may result in lower intraocular pressure (IOP) and reduced medication burden as compared to single MIGS (sMIGS). Current evidence suggests some cMIGS are more effective in reducing medication burden for at least 12 months versus sMIGS. This review focuses on the current evidence related to the efficacy of cMIGS as well as novel combinations of standalone MIGS, limitations of the current literature, and future directions for research.


Asunto(s)
Implantes de Drenaje de Glaucoma , Glaucoma , Humanos , Glaucoma/cirugía , Procedimientos Quirúrgicos Oftalmológicos , Presión Intraocular , Tonometría Ocular
20.
Front Plant Sci ; 14: 1097158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025149

RESUMEN

Low temperatures restrict the growth and geographic distribution of plants, as well as crop yields. Appropriate transcriptional regulation is critical for cold acclimation in plants. In this study, we found that the mutation of Leaf and flower related (LFR), a component of SWI/SNF chromatin remodeling complex (CRC) important for transcriptional regulation in Arabidopsis (Arabidopsis thaliana), resulted in hypersensitivity to freezing stress in plants with or without cold acclimation, and this defect was successfully complemented by LFR. The expression levels of CBFs and COR genes in cold-treated lfr-1 mutant plants were lower than those in wild-type plants. Furthermore, LFR was found to interact directly with ICE1 in yeast and plants. Consistent with this, LFR was able to directly bind to the promoter region of CBF3, a direct target of ICE1. LFR was also able to bind to ICE1 chromatin and was required for ICE1 transcription. Together, these results demonstrate that LFR interacts directly with ICE1 and activates ICE1 and CBF3 gene expression in response to cold stress. Our work enhances our understanding of the epigenetic regulation of cold responses in plants.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda