RESUMEN
The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.
Asunto(s)
Osteomielitis , Receptores de Interleucina-1 , Ratones , Animales , Receptores de Interleucina-1/genética , Osteomielitis/tratamiento farmacológico , Osteomielitis/genética , Osteomielitis/patología , Inflamación/genética , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Transducción de Señal , MutaciónRESUMEN
BACKGROUND: Adult-onset Still's disease (AOSD) and systemic juvenile idiopathic arthritis (sJIA) resemble a continuum of a rare, polygenic IL-1ß-driven disease of unknown etiology. OBJECTIVE: In the present study we sought to investigate a potential role of recently described autoantibodies neutralizing the interleukin-1(IL-1)-receptor antagonist (IL-1-Ra) in the pathogenesis of Still's disease. METHODS: Serum or plasma samples from Still's disease patients (AOSD, n = 23; sJIA, n = 40) and autoimmune and/or inflammatory disease controls (n = 478) were analyzed for autoantibodies against progranulin (PGRN), IL-1Ra, IL-18 binding protein (IL-18BP), and IL-36Ra, as well as circulating IL-1Ra and IL-36Ra levels by ELISA. Biochemical analyses of plasma IL-1Ra were performed by native Western blots and isoelectric focusing. Functional activity of the autoantibodies was examined by an in vitro IL-1ß-signaling reporter assay. RESULTS: Anti-IL-1-Ra IgG were identified in 7 (27%) out of 29 Still's disease patients, including 4/23 with AOSD and 3/6 with sJIA and coincided with a hyperphosphorylated isoform of endogenous IL-1Ra. Anti-IL-36Ra antibodies were found in 2 AOSD patients. No anti-PGRN or anti-IL-18BP antibodies were detected. Selective testing for anti-IL-1Ra antibodies in an independent cohort (sJIA, n = 34) identified 5 of 34 (14.7%) as seropositive. Collectively, 8/12 antibody-positive Still's disease patients were either new-onset active disease or unresponsive to IL-1 blocking drugs. Autoantibody-seropositivity associated with decreased IL-1Ra plasma/serum levels. Seropositive plasma impaired in vitro IL-1Ra bioactivity, which could be reversed by anakinra or canakinumab treatment. CONCLUSION: Autoantibodies neutralizing IL-1Ra may represent a novel patho-mechanism in a subgroup of Still's disease patients, which is sensitive to high-dose IL-1 blocking therapy.
Asunto(s)
Artritis Juvenil , Proteína Antagonista del Receptor de Interleucina 1 , Humanos , Autoanticuerpos , Ensayo de Inmunoadsorción Enzimática , Interleucina-1betaRESUMEN
BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.
Asunto(s)
Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/farmacología , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Leucocitos Mononucleares/metabolismo , Hidróxido de Sodio/metabolismo , Hidróxido de Sodio/farmacología , Monocitos , Mediadores de Inflamación/metabolismoRESUMEN
In a subset of patients with mental disorders, such as depression, low-grade inflammation and altered immune marker concentrations are observed. However, these immune alterations are often assessed by only one data type and small marker panels. Here, we used a transdiagnostic approach and combined data from two cohorts to define subgroups of depression symptoms across the diagnostic spectrum through a large-scale multi-omics clustering approach in 237 individuals. The method incorporated age, body mass index (BMI), 43 plasma immune markers and RNA-seq data from peripheral mononuclear blood cells (PBMCs). Our initial clustering revealed four clusters, including two immune-related depression symptom clusters characterized by elevated BMI, higher depression severity and elevated levels of immune markers such as interleukin-1 receptor antagonist (IL-1RA), C-reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-seq data mostly differentiated a cluster with low depression severity, enriched in brain related gene sets. This cluster was also distinguished by electrocardiography data, while structural imaging data revealed differences in ventricle volumes across the clusters. Incorporating predicted cell type proportions into the clustering resulted in three clusters, with one showing elevated immune marker concentrations. The cell type proportion and genes related to cell types were most pronounced in an intermediate depression symptoms cluster, suggesting that RNA-seq and immune markers measure different aspects of immune dysregulation. Lastly, we found a dysregulation of the SERPINF1/VEGF-A pathway that was specific to dendritic cells by integrating immune marker and RNA-seq data. This shows the advantages of combining different data modalities and highlights possible markers for further stratification research of depression symptoms.
RESUMEN
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Ratones , Microglía , Serina-Treonina Quinasas TOR , Citocinas , Sirolimus/farmacología , Sinapsis , Interleucina-1 , MamíferosRESUMEN
OBJECTIVE: Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously. METHODS: The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test. RESULTS: The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1ß stimulation, as well as suppressing IL-1ß-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques. CONCLUSIONS: These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.
RESUMEN
INTRODUCTION: tRNA-derived fragments (tRFs) play an important role in immune responses. To clarify the role of tRFs in autoimmunity we studied circulating tRF-levels in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), and in a murine model for arthritis. MATERIAL AND METHODS: Circulating tRF-levels were quantified by miR-Q RT-qPCR. tRNA processing and modification enzyme expression was analysed by RT-qPCR and public transcriptomics data. RESULTS: Significant reduction (up to 3-fold on average) of tRF-levels derived from tRNA-Gly-GCC,CCC, tRNA-Glu-CTC and tRNA-Val-CAC,AAC was observed in RA patients, whereas tRNA-Glu-CTC and tRNA-Val-CAC,AAC tRFs were found at significantly higher levels (up to 3-fold on average) in PsA patients, compared to healthy controls. Also in arthritic IL1Ra-KO mice reduced levels of tRNA-Glu-CTC fragments were seen. The expression of NSUN2, a methyltransferase catalysing tRNA methylation, was increased in RA-peripheral blood mononuclear cells (PBMCs) compared to PsA, but this is not consistently supported by public transcriptomics data. DISCUSSION: The observed changes of specific tRF-levels may be involved in the immune responses in RA and PsA and may be applicable as new biomarkers. CONCLUSION: Circulating tRF-levels are decreased in RA and increased in PsA and this may, at least in part, be mediated by methylation changes.
Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Humanos , Animales , Ratones , Artritis Psoriásica/genética , Leucocitos Mononucleares/metabolismo , ARN de Transferencia/genética , Biomarcadores/metabolismoRESUMEN
BACKGROUND: More efficient and convenient diagnostic method is a desperate need to reduce the burden of tuberculosis (TB). This study explores the multiple cytokines secretion based on QuantiFERON-TB Gold Plus (QFT-Plus), and screens for optimal cytokines with diagnostic potential to differentiate TB infection status. METHODS: Twenty active tuberculosis (ATB) patients, fifteen patients with latent TB infection (LTBI), ten patients with previous TB and ten healthy controls (HC) were enrolled. Whole blood samples were collected and stimulated by QFT-Plus TB1 and TB2 antigens. The levels of IFN-γ, TNF-α, IL-2, IL-6, IL-5, IL-10, IP-10, IL-1Ra, CXCL-1 and MCP-1 in supernatant were measured by Luminex bead-based multiplex assays. The receiver operating characteristic curve was used to evaluate the diagnostic accuracy of cytokine for distinguishing different TB infection status. RESULTS: After stimulation with QFT-Plus TB1 and TB2 antigens, the levels of all cytokines, except IL-5 in TB2 tube, in ATB group were significantly higher than that in HC group. The levels of IL-1Ra concurrently showed the equally highest AUC for distinguishing TB infection from HC, followed by the levels of IP-10 in both TB1 tube and TB2 tube. Moreover, IP-10 levels displayed the largest AUC for distinguishing ATB patients from non-ATB patients. Meanwhile, the levels of IP-10 also demonstrated the largest AUC in both TB1 tube and TB2 tube for distinguishing ATB patients from LTBI. CONCLUSIONS: In addition to conventional detection of IFN-γ, measuring IP-10 and IL-1Ra based on QFT-Plus may have the more tremendous potential to discriminate different TB infection status.
Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Citocinas , Proteína Antagonista del Receptor de Interleucina 1 , Quimiocina CXCL10 , Interleucina-5 , Tuberculosis/diagnóstico , Antígenos , Ensayos de Liberación de Interferón gamma/métodosRESUMEN
OBJECTIVE: This study aims to assess the prognostic and diagnostic value of inflammatory indexes related to gestational diabetes mellitus (GDM) from the second trimester to the third trimester of pregnancy. MATERIALS AND METHODS: In this study, we randomly selected 65 pregnant women diagnosed with GDM at our hospital from December 2022 to June 2023 to form the GDM group (n = 65). Additionally, 65 pregnant women at the same gestational weeks without GDM were selected as the Normal group (n = 65). We collected gestational information and serum samples at 24 and 36 weeks of gestation from the participants. The levels of NLRP3, IL-1Ra, and TBP-2 were determined using enzyme-linked immunosorbent assay (ELISA) to explore their changes during pregnancy. Further, this study analyzed the changes in the levels of NLRP3, IL-1Ra, and TBP-2 at 24 and 36 weeks of gestation in GDM patients and their correlation with gestational diabetes mellitus. RESULTS: The study showed that pre-pregnancy body mass index (BMI), neonatal weight, gestational hypertension, and macrosomia are significantly associated with the occurrence of GDM (P < 0.05). Statistical analysis comparing the normal and GDM groups found no significant changes in the levels of NLRP3, IL-1Ra, and TBP-2 with the progression of gestation in the normal group. In contrast, in the GDM group, the levels of IL-1Ra in serum samples at 24 and 36 weeks were significantly increased (P < 0.05) while the levels of NLRP3 and TBP-2 were significantly reduced (P < 0.05). At 36 weeks, there was a positive correlation between the levels of NLRP3, IL-1Ra, and TBP-2. Compared to the normal group, the overall levels of NLRP3, IL-1Ra, and TBP-2 in the GDM group were lower (P < 0.05) and the weight of the newborns was significantly correlated with these three indicators (P < 0.05), specifically newborn weight increased with the levels of NLRP3 and TBP-2 but decreased with the increase of IL-1Ra (P < 0.05). Multifactorial logistic regression analysis further revealed that NLRP3 is an independent factor influencing GDM (P < 0.05). ROC curve analysis of the NLRP3 level at 24 weeks of gestation found that NLRP3 has a good value in predicting GDM (AUC = 0.720, 95%CI 0.630-0.809, P < 0.001) and the combined prediction of NLRP3, IL-1Ra, and TBP-2 also showed a good predictive value for GDM. CONCLUSION: The changes in NLRP3, IL-1Ra, and TBP-2 persisted throughout the 24 to 36 weeks of gestation, playing an important role in predicting the occurrence of GDM and the weight of the newborn.
Asunto(s)
Diabetes Gestacional , Proteína Antagonista del Receptor de Interleucina 1 , Proteína con Dominio Pirina 3 de la Familia NLR , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Humanos , Femenino , Embarazo , Diabetes Gestacional/sangre , Diabetes Gestacional/diagnóstico , Segundo Trimestre del Embarazo/sangre , Tercer Trimestre del Embarazo/sangre , Adulto , Proteína con Dominio Pirina 3 de la Familia NLR/sangre , Proteína Antagonista del Receptor de Interleucina 1/sangre , Biomarcadores/sangre , Inflamación/sangre , Estudios de Casos y Controles , Factores Asociados con la Proteína de Unión a TATA/sangre , Índice de Masa Corporal , Peso al NacerRESUMEN
Hepatitis B virus (HBV) vaccines are composed of surface antigen HBsAg that spontaneously assembles into subviral particles. Factors that impede its humoral immunity in 5% to 10% of vaccinees remain elusive. Here, we showed that the low-level interleukin-1 receptor antagonist (IL-1Ra) can predict antibody protection both in mice and humans. Mechanistically, murine IL-1Ra-inhibited T follicular helper (Tfh) cell expansion and subsequent germinal center (GC)-dependent humoral immunity, resulting in significantly weakened protection against the HBV challenge. Compared to soluble antigens, HBsAg particle antigen displayed a unique capture/uptake and innate immune activation, including IL-1Ra expression, preferably of medullary sinus macrophages. In humans, a unique polymorphism in the RelA/p65 binding site of IL-1Ra enhancer associated IL-1Ra levels with ethnicity-dependent vaccination outcome. Therefore, the differential IL-1Ra response to particle antigens probably creates a suppressive milieu for Tfh/GC development, and neutralization of IL-1Ra would resurrect antibody response in HBV vaccine nonresponders.
Asunto(s)
Inmunogenicidad Vacunal/inmunología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Células T Auxiliares Foliculares/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Humanos , Inmunidad Humoral/inmunología , Inmunogenicidad Vacunal/fisiología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Células T Auxiliares Foliculares/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodosRESUMEN
BACKGROUND: Rhinoviruses (RVs) are the most common trigger for asthma exacerbations, and there are currently no targeted therapies for viral-induced asthma exacerbations. RV infection causes neutrophilic inflammation, which is often resistant to effects of glucocorticoids. IL-1 receptor antagonist (IL-1RA) treatment reduces neutrophilic inflammation in humans challenged with inhaled endotoxin and thus may have therapeutic potential for RV-induced asthma exacerbations. OBJECTIVE: We sought to test the hypothesis that IL-1RA treatment of airway epithelium reduces RV-mediated proinflammatory cytokine production, which is important for neutrophil recruitment. METHODS: Human bronchial epithelial cells from deceased donors without prior pulmonary disease were cultured at air-liquid interface and treated with IL-13 to approximate an asthmatic inflammatory milieu. Human bronchial epithelial cells were infected with human RV-16 with or without IL-1RA treatment. RESULTS: RV infection promoted the release of IL-1α and the neutrophil-attractant cytokines IL-6, IL-8, and CXCL10. Proinflammatory cytokine secretion was significantly reduced by IL-1RA treatment without significant change in IFN-ß release or RV titer. In addition, IL-1RA reduced MUC5B expression after RV infection without impacting MUC5AC. CONCLUSIONS: These data suggest that IL-1RA treatment significantly reduced proinflammatory cytokines while preserving the antiviral response. These results provide evidence for further investigation of IL-1RA as a novel targeted therapy against neutrophil-attractant cytokine release in RV-induced airway inflammatory responses.
Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Humanos , Rhinovirus/fisiología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Receptores de Interleucina-1 , Asma/tratamiento farmacológico , Citocinas/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Infecciones por Picornaviridae/tratamiento farmacológicoRESUMEN
Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1 , Neoplasias Pancreáticas , Esfingomielinas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Humanos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1/metabolismo , Esfingomielinas/metabolismo , Citocinas/metabolismo , Línea Celular Tumoral , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Células Th17/inmunología , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/efectos de los fármacos , Células Th2/metabolismo , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/química , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacosRESUMEN
Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing ß-glucans from yeast, shiitake, maitake, and botanical non-ß-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1ß, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.
Asunto(s)
Calostro , Inmunidad Innata , Péptidos , beta-Glucanos , Animales , Bovinos , Humanos , Calostro/química , Calostro/inmunología , Inmunidad Innata/efectos de los fármacos , beta-Glucanos/farmacología , beta-Glucanos/química , Péptidos/farmacología , Péptidos/química , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Citocinas/metabolismo , Activación de Linfocitos/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Agaricales/química , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células K562 , Antígenos CD/metabolismo , Lectinas Tipo CRESUMEN
Acute ischemic stroke (AIS), one of the leading causes of mortality worldwide, is characterized by a rapid inflammatory cascade resulting in exacerbation of ischemic brain injury. Microglia are the first immune responders. However, the role of postischemic microglial activity in ischemic brain injury remains far from being fully understood. Here, using the transgenic mouse line CX3 CR1creER :R26iDTR to genetically ablate microglia, we showed that microglial deletion exaggerated ischemic brain injury. Associated with this worse outcome, there were increased neutrophil recruitment, microvessel blockade and blood flow stagnation in the acute phase, accompanied by transcriptional upregulation of chemokine (C-X-C motif) ligand 1 (CXCL1). Our study showed that microglial interleukin-1 receptor antagonist (IL-1RA) suppressed astrocytic CXCL1 expression induced by oxygen and glucose deprivation and inhibited neutrophil migration. Furthermore, neutralizing antibody therapy against CXCL1 or the administration of recombinant IL-1RA protein reduced brain infarct volume and improved motor coordination performance of mice after ischemic stroke. Our study suggests that microglia protect against acute ischemic brain injury by secreting IL-1RA to inhibit astrocytic CXCL1 expression, which reduces neutrophil recruitment and neutrophil-derived microvessel occlusion.
Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacología , Microglía/metabolismo , Infiltración Neutrófila/fisiología , Lesiones Encefálicas/metabolismo , Ratones Transgénicos , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/metabolismoRESUMEN
There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Sialoglicoproteínas , Senescencia Celular/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Interleucina-1 , QueratinocitosRESUMEN
Gout is a form of inflammatory arthritis that results from elevated serum uric acid levels and the deposition of urate crystals in multiple joints. The inflammatory response during an acute gout attack is mediated by the activation of the NLRP3 inflammasome, leading to the release of IL-1ß and inducing a localized tissue inflammatory response. Urate lowering therapies such as Pegloticase effectively reduce serum uric acid levels but are generally associated with an increase in acute gout flares. In this study, we developed a long-acting anti-inflammatory recombinant uricase by sequential fusing interleukin-1 receptor antagonist (IL-1Ra) and albumin-binding domain (ABD) with the N-terminal end of Arthrobacter globiformis uricase (AgUox). The recombinant uricase has longer in vivo half-life, and significantly alleviates monosodium urate (MSU) crystals induced inflammation in mouse model compared with the wild-type AgUox. This long-acting anti-inflammatory recombinant uricase has the potential to be developed as an effective urate lowering therapy with better safety profiles.
Asunto(s)
Artritis Gotosa , Gota , Animales , Ratones , Ácido Úrico , Semivida , Urato Oxidasa/genética , Urato Oxidasa/uso terapéutico , Gota/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , InflamasomasRESUMEN
BACKGROUND: The interleukin-1 receptor antagonist (IL-1Ra) is a crucial molecule that counteracts the effects of interleukin-1 (IL-1) by binding to its receptor. A high concentration of IL-1Ra is required for complete inhibition of IL-1 activity. However, the currently available Escherichia coli-expressed IL-1Ra (E. coli IL-1Ra, Anakinra) has a limited half-life. This study aims to produce a cost-effective, functional IL-1Ra on an industrial scale by expressing it in the pyrG auxotroph Aspergillus oryzae. RESULTS: We purified A. oryzae-expressed IL-1Ra (Asp. IL-1Ra) using ion exchange and size exclusion chromatography (53 mg/L). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that Asp. IL-1Ra is N-glycosylated and approximately 17 kDa in size. We conducted a comparative study of the bioactivity, binding kinetics, and half-life between Asp. IL-1Ra and E. coli IL-1Ra. Asp. IL-1Ra showed good bioactivity even at a low concentration of 0.5 nM. The in vitro half-life of Asp. IL-1Ra was determined for different time points (0, 24, 48, 72, and 96 h) and showed higher stability than E. coli IL-1Ra, despite exhibiting a 100-fold lower binding affinity (2 nM). CONCLUSION: This study reports the production of a functional Asp. IL-1Ra with advantageous stability, without extensive downstream processing. To our knowledge, this is the first report of a recombinant functional and stable IL-1Ra expressed in A. oryzae. Our results suggest that Asp. IL-1Ra has potential for industrial-scale production as a cost-effective alternative to E. coli IL-1Ra.
Asunto(s)
Aspergillus oryzae , Proteína Antagonista del Receptor de Interleucina 1 , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/química , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismoRESUMEN
BACKGROUND: Interleukin-1 receptor antagonist (IL-1RA), a member of the IL-1 family, has diverse roles in cancer development. However, the role of IL-1RA in oral squamous cell carcinoma (OSCC), in particular the underlying mechanisms, remains to be elucidated. METHODS: Tumor tissues from OSCC patients were assessed for protein expression by immunohistochemistry. Patient survival was evaluated by Kaplan-Meier curve analysis. Impact of differential IL-1RA expression on cultured OSCC cell lines was assessed in vitro by clonogenic survival, tumorsphere formation, soft agar colony formation, and transwell cell migration and invasion assays. Oxygen consumption rate was measured by Seahorse analyzer or multi-mode plate reader. PCR array was applied to screen human cancer stem cell-related genes, proteome array for phosphorylation status of kinases, and Western blot for protein expression in cultured cells. In vivo tumor growth was investigated by orthotopic xenograft in mice, and protein expression in xenograft tumors assessed by immunohistochemistry. RESULTS: Clinical analysis revealed that elevated IL-1RA expression in OSCC tumor tissues was associated with increased tumor size and cancer stage, and reduced survival in the patient group receiving adjuvant radiotherapy compared to the patient group without adjuvant radiotherapy. In vitro data supported these observations, showing that overexpression of IL-1RA increased OSCC cell growth, migration/invasion abilities, and resistance to ionizing radiation, whereas knockdown of IL-1RA had largely the opposite effects. Additionally, we identified that EGFR/JNK activation and SOX2 expression were modulated by differential IL-1RA expression downstream of mitochondrial metabolism, with application of mitochondrial complex inhibitors suppressing these pathways. Furthermore, in vivo data revealed that treatment with cisplatin or metformin-a mitochondrial complex inhibitor and conventional therapy for type 2 diabetes-reduced IL-1RA-associated xenograft tumor growth as well as EGFR/JNK activation and SOX2 expression. This inhibitory effect was further augmented by combination treatment with cisplatin and metformin. CONCLUSIONS: The current study suggests that IL-1RA promoted OSCC malignancy through mitochondrial metabolism-mediated EGFR/JNK activation and SOX2 expression. Inhibition of this mitochondrial metabolic pathway may present a potential therapeutic strategy in OSCC.
Asunto(s)
Carcinoma de Células Escamosas , Diabetes Mellitus Tipo 2 , Neoplasias de Cabeza y Cuello , Metformina , Neoplasias de la Boca , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello , Cisplatino/farmacología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Metformina/farmacología , Proliferación Celular , Movimiento Celular , Factores de Transcripción SOXB1/farmacologíaRESUMEN
INTRODUCTION: Allergic asthmatics with both an early (EAR) and a late allergic reaction (LAR) following allergen exposure are termed 'dual responders' (DR), while 'single responders' (SR) only have an EAR. Mechanisms that differentiate DR from SR are largely unknown, particularly regarding the role and phenotypes of neutrophils. Therefore, we aimed to study neutrophils in DR and SR asthmatics. METHODS: Thirty-four allergic asthmatics underwent an inhaled allergen challenge, samples were collected before and up to 24 h post-challenge. Cell differentials were counted from bronchial lavage, alveolar lavage and blood; and tissue neutrophils were quantified in immune-stained bronchial biopsies. Lavage neutrophil nuclei lobe segmentation was used to classify active (1-4 lobes) from suppressive neutrophils (≥5 lobes). Levels of transmigration markers: soluble (s)CD62L and interleukin-1Ra, and activity markers: neutrophil elastase (NE), DNA-histone complex and dsDNA were measured in lavage fluid and plasma. RESULTS: Compared with SR at baseline, DR had more neutrophils in their bronchial airways at baseline, both in the lavage (p = .0031) and biopsies (p = .026) and elevated bronchial neutrophils correlated with less antitransmigratory IL-1Ra levels (r = -0.64). DR airways had less suppressive neutrophils and more 3-lobed (active) neutrophils (p = .029) that correlated with more bronchial lavage histone (p = .020) and more plasma NE (p = .0016). Post-challenge, DR released neutrophil extracellular trap factors in the blood earlier and had less pro-transmigratory sCD62L during the late phase (p = .0076) than in SR. CONCLUSION: DR have a more active airway neutrophil phenotype at baseline and a distinct neutrophil response to allergen challenge that may contribute to the development of an LAR. Therefore, neutrophil activity should be considered during targeted diagnosis and bio-therapeutic development for DR.
Asunto(s)
Asma , Hipersensibilidad , Humanos , Neutrófilos , Histonas , Alérgenos , Fenotipo , Pruebas de Provocación BronquialRESUMEN
BACKGROUND: Burn injury is a sudden and traumatic injury that affects a large part of the population worldwide, who are placed at high risk of developing hypertrophic scars (HTS). HTS are a fibrotic scar resulting in painful contracted and raised scarring, affecting mobility in joints and work life, as well as cosmetically. The aim of this research was to enhance our understanding of the systematic response of monocytes and cytokines in wound healing after burn injury, in order to develop novel approaches to prevention and treatment of HTS. METHODS: Twenty-seven burn patients and thirteen healthy individuals were recruited in this study. Burn patients were stratified by burn total body surface area (TBSA). Peripheral blood samples were taken post-burn injury. Serum and peripheral blood mononuclear cells (PBMCs) were separated from the blood samples. This research investigated cytokines IL-6, IL-8, IL1RA, IL-10, and chemokine pathways SDF-1/CXCR4, MCP-1/CCR2, RANTES/CCR5 during the wound healing process in burn patients with varying severity of injuries by using enzyme-linked immunosorbent assays. PBMCs were stained for monocytes and the chemokine receptors by flow cytometry. Statistical analysis was done by one-way ANOVA with a Tukey correction, and regression analysis was performed using Pearson's Correlation analysis. RESULTS: The CD14+ CD16- monocyte subpopulation is larger in patients who developed HTS at 4-7 days. The CD14+ CD16+ monocyte subpopulation is smaller in the first week of injury, where it is similar after 8 days. Burn injury increased CXCR4, CCR2, and CCR5 expressions in CD14+ CD16+ monocytes. Increases in MCP-1 at 0-3 days after burn injury was positively correlated with burn severity. IL-6, IL-8, RANTES, and MCP-1 significantly increased with increasing burn severity. CONCLUSIONS: Monocytes and their chemokine receptors, as well as systemic levels of cytokines in wound healing of burn patients and scar development will require ongoing assessment to enhance our understanding of the abnormal wound healing after burn injury.