Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Trends Immunol ; 44(2): 119-128, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706738

RESUMEN

Diverse mammalian antibody repertoires are produced via distant genomic contacts involving immunoglobulin Igh variable (V), diversity (D), and joining (J) gene segments and result in V(D)J recombination. How such interactions determine V gene usage remains unclear. The recombination-activating gene (RAG) chromatin scanning model posits that RAG recombinase bound to the recombination center (RC) linearly tracks along chromatin by means of cohesin-mediated loop extrusion; a proposition supported by cohesin depletion studies. A mechanistic role for chromatin loop extrusion has also been implicated for Igh locus contraction. In this opinion, we provide perspective on how loop extrusion interfaces with the 3D conformation of the Igh locus and newly identified enhancers that regionally regulate VH gene usage during V(D)J recombination, shaping the preselected repertoire.


Asunto(s)
Diversidad de Anticuerpos , Recombinación V(D)J , Animales , Humanos , Diversidad de Anticuerpos/genética , Cromatina/genética , Mamíferos
2.
J Clin Immunol ; 43(1): 109-122, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044170

RESUMEN

Patients with Wiskott-Aldrich syndrome (WAS) harbor mutations in the WAS gene and suffer from immunodeficiency, microthrombocytopenia, and eczema. T-cells play an important role in immune response in the skin and the γδT-cells have an important role in skin homeostasis. Since WAS patients often present with eczema, we wanted to examine whether the T-cell receptor gamma (TRG) repertoire of the γδT-cells is affected in these patients. In addition, the immunoglobulin heavy chain (IGH) repertoire from genomic DNA of WAS patients was not yet studied. Thus, we sought to determine the effects that specific WAS mutations from our patients have in shaping the TRG and IGH immune repertoires. We collected clinical and genetic data on four WAS patients, each harboring a different mutation in the WAS gene. Using next-generation sequencing (NGS), we analyzed their TRG and IGH repertoires using genomic DNA isolated from their peripheral blood. We analyzed the TRG and IGH repertoire sequences to show repertoire restriction, clonal expansions, preferential utilization of specific V genes, and unique characteristics of the antigen binding region in WAS patients with eczema compared to healthy controls. Both the TRG and IGH repertoire showed diverse repertoire comparable to healthy controls on one the hand, and on the other hand, the IGH repertoire showed increased diversity, more evenly distributed repertoire and immaturity of the antigen binding region. Thus, we demonstrate by analyzing the repertoire based on genomic DNA, the various effect that WAS mutations have in shaping the TRG and IGH adaptive immune repertoires.


Asunto(s)
Eccema , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Cadenas Pesadas de Inmunoglobulina/genética , Linfocitos B , Linfocitos T , Eccema/genética
3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613668

RESUMEN

The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Linfocitos B , Autoinmunidad , Anticuerpos
4.
J Autoimmun ; 97: 100-107, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385082

RESUMEN

Immunoglobulin A Nephropathy (IgAN) is the most common glomerulonephritis worldwide. The pathologic hallmark of IgAN is immune complex deposited in glomerular mesangium, which induces inflammation and affects the kidney's normal functions. The exact pathogenesis of IgAN, however, remains obscure. Further, in current clinical practice, the diagnosis relies on needle biopsy of renal tissue. Therefore, a non-invasive method for diagnosis and prognosis surveillance of the disease is highly desirable. To this end, we investigated the T cell receptor beta chain (TCRB) and immunoglobulin heavy chain (IGH) repertoire in circulating lymphocytes and compared them with kidney infiltrating lymphocytes using immune repertoire high throughput sequencing. We found that some features of TCRB and IGH in renal tissues were remarkably different from that in the blood, including decreased repertoire diversity, increased IgA and IgG frequency, and more antigen-experienced B cells. The complementarity-determining region 3 (CDR3) length of circulating TCRB and IGH in IgAN patients was significantly shorter than that in healthy controls, which is the result of both VDJ rearrangement and clonal selection. The IgA1 frequency in the blood of IgAN patients is significantly higher than that in other Nephropathy (NIgAN) patients and healthy control. Importantly we identified a set of TCRB and IGH clones, which can be used to distinguish IgAN from NIgAN and healthy controls with high accuracy. These results indicated that the TCRB and IGH repertoire can potentially serve as non-invasive biomarkers for the diagnosis of IgAN. The characteristics of the kidney infiltrating and circulating lymphocytes repertoires shed light on IgAN detection, treatment and surveillance.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Glomerulonefritis por IGA/diagnóstico , Glomerulonefritis por IGA/etiología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adolescente , Adulto , Anciano , Regiones Determinantes de Complementariedad/inmunología , Regiones Determinantes de Complementariedad/metabolismo , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Femenino , Glomerulonefritis por IGA/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Clin Immunol ; 183: 8-16, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28645875

RESUMEN

The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immunogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL) and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed repertoire, are shared with the postnatal samples, consistent with persisting fetal IgM+ B cells being a source of natural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM+ B cell receptors associated with chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B cells can be subject to malignant transformation late in life. Overall, these novel data provide unique insights into the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime.


Asunto(s)
Linfocitos B/inmunología , Médula Ósea/inmunología , Feto/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoglobulina M/genética , Leucemia Linfocítica Crónica de Células B/genética , Hígado/inmunología , Linfopoyesis/genética , Receptores de Antígenos de Linfocitos B/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Inmunoglobulina M/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfopoyesis/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Análisis de Secuencia de ADN
6.
Immunol Res ; 70(2): 216-223, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35001352

RESUMEN

X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton tyrosine kinase) BTK) gene. Affected patients have severely reduced amounts of circulating B cells. Patients with atypical XLA may have residual circulating B cells, and there are few studies exploring these cells' repertoire. We aimed to study the B cell repertoire of a novel hypomorphic mutation in the BTK gene, using the next generation sequencing (NGS) technology. Clinical data was collected from our clinical records. Real-time PCR was used to determine KREC copies, and NGS was used to determine the immunoglobulin (Ig) heavy chain (IgH) repertoire diversity. Both patients had a relatively mild clinical and laboratory phenotype, residual BTK protein expression, and the same novel mutation in the BTK gene, c.1841 T > C, p. L614P. Signal-joint kappa-deleting recombination excision circles (sj-KREC) for both patients were completely absent reflecting lack of naïve B cells. The intron RSS-Kde coding joints (cj) were significantly reduced, reflecting residual replicating B cells. NGS displayed restricted IgH repertoire with highly uneven distribution of clones, especially for Pt2. We report a novel BTK mutation, c.1841 T > C (p. L614P) that is associated with a relatively mild phenotype. We conclude that the IgH repertoire in atypical XLA is restricted with highly uneven distribution of clones. This phenomenon may be explained by extremely reduced to non-existent levels of BTK in B cells. This report sheds further light on atypical cases of XLA.


Asunto(s)
Agammaglobulinemia , Enfermedades Genéticas Ligadas al Cromosoma X , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Mutación
7.
Front Immunol ; 12: 649458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815408

RESUMEN

A distinct B cell population marked by elevated CD11c expression is found in patients with systemic lupus erythematosus (SLE). Cells with a similar phenotype have been described during chronic infection, but variable gating strategies and nomenclature have led to uncertainty of their relationship to each other. We isolated CD11chi cells from peripheral blood and characterized them using transcriptome and IgH repertoire analyses. Gene expression data revealed the CD11chi IgD+ and IgD- subsets were highly similar to each other, but distinct from naive, memory, and plasma cell subsets. Although CD11chi B cells were enriched in some germinal center (GC) transcripts and expressed numerous negative regulators of B cell receptor (BCR) activation, they were distinct from GC B cells. Gene expression patterns from SLE CD11chi B cells were shared with other human diseases, but not with mouse age-associated B cells. IgH V-gene sequencing analysis showed IgD+ and IgD- CD11chi B cells had somatic hypermutation and were clonally related to each other and to conventional memory and plasma cells. However, the IgH repertoires expressed by the different subsets suggested that defects in negative selection during GC transit could contribute to autoimmunity. The results portray a pervasive B cell population that accumulates during autoimmunity and chronic infection and is refractory to BCR signaling.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Infecciones/inmunología , Lupus Eritematoso Sistémico/inmunología , Adulto , Anciano , Animales , Subgrupos de Linfocitos B/metabolismo , Antígeno CD11c/metabolismo , Biología Computacional , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Centro Germinal/citología , Humanos , Cadenas Pesadas de Inmunoglobulina/metabolismo , Infecciones/sangre , Lupus Eritematoso Sistémico/sangre , Ratones , Persona de Mediana Edad
8.
J Immunol Methods ; 474: 112647, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31421082

RESUMEN

Cytokeratin 18 (CK18), the main scaffold protein of keratinocyte, is distributed in epithelial cells. This structural protein maintains the integrity and continuity of epithelial tissue. Cytokeratin is also frequently used as an immunohistochemical marker of tumor growth. In recent years, immune repertoire (IR) evaluation using next-generation sequencing (NGS) have become increasingly efficient. Here we deep sequenced the mouse IR of the immunoglobulin heavy chain (IGH) after CK18 immunization. We comprehensively analyzed the IR based on complementarity determining region 3 (CDR3) abundance, germline gene usage polarization, clone diversity, and lineage. We found many convergence characteristics after CK18 immunization. Convergence represents a phenomenon that antigen stimulation or pathogen exposure induces the antigen specific clone expansion and enrichment. The convergence could be used for the immune evaluation and antibody screen. After immunization, the IGHV5 gene clusters became preponderant. The abundance and length of the most frequent CDR3 both increased, nevertheless the IR diversity level decreased. From the convergent IGH repertoires, we selected and expressed six antibodies with the most frequent CDR3s and IGH V-J combinations. The ELISA results suggested all screened six antibodies bound CK18 specifically. The most potential antibody had 9.424E-10M M affinity for the interaction with the CK18. Therefore, this is the NGS platform has been first used for anti-CK18 monoclonal antibodies (MAbs) discovery. These analyses methods could also be used for vaccine evaluation.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Regiones Determinantes de Complementariedad/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Queratina-18/inmunología , Animales , Anticuerpos Monoclonales/genética , Afinidad de Anticuerpos , Diversidad de Anticuerpos , Regiones Determinantes de Complementariedad/genética , Ensayo de Inmunoadsorción Enzimática , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunización , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Queratina-18/administración & dosificación , Masculino , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda