Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Oncotarget ; 9(4): 4318-4337, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29435105

RESUMEN

In this study, experimental pathology, flow cytometry (FCM), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to evaluate the effects of sodium fluoride (NaF) on hepatocellular cell cycle progression in mice. A total of 240 ICR mice were divided equally into four groups; the experimental groups received 12, 24, or 48 mg/kg NaF intragastrically for 42 days, while the control group received distilled water. Doses of NaF above 12 mg/kg increased the percentage of cells in S phase (S-phase arrest), reduced percentages of cells in G0/G1 or G2/M phase, and activated the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways. Activation of these pathways was characterized by up-regulation of ATM, p53, p21, ATR, and Chk1 mRNA and protein expression, and down-regulation of Cdc25A, cyclin E, cyclin A, CDK2, CDK4, and proliferating cell nuclear antigen (PCNA) mRNA and protein expression. These results indicate that NaF caused S-phase arrest by activating the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways.

2.
Oncotarget ; 9(1): 67-74, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29416596

RESUMEN

Since urine samples more directly reflect kidney alterations and damage than blood samples, we investigated whether urine anti-PLA2R antibody (uPLA2R-Ab) could be utilized similarly to serum anti-PLA2R antibody (sPLA2R-Ab) as a noninvasive biomarker of idiopathic membranous nephropathy (IMN). In this study, we performed a qualitative analysis using an indirect immunofluorescence test (IIFT) and measured uPLA2R-Ab and sPLA2R-Ab concentrations using an enzyme-linked immunosorbent assay (ELISA) in 28 patients with biopsy-proven IMN and 12 patients with secondary membranous nephropathy (SMN). Overall, 64.3% (n=18) of patients with IMN had IIFT-positive sPLA2R-Ab, 67.9% (n=19) of patients with IMN had IIFT-positive uPLA2R-Ab, and none of the SMN patients had IIFT-positive sPLA2R-Ab or uPLA2R-Ab. The titers of the anti-PLA2R antibody from the IMN patients in the urine (10.72±22.24 RU/µmol, presented as uPLA2R-Ab/urine creatinine) and serum (107.36±140.93 RU/ml) were higher than those from the SMN patients (0.51±0.46 RU/µmol, 0.008±0.029 RU/ml, respectively, p<0.05). Statistical analyses indicated that there were positive correlations between uPLA2R-Ab and gPLA2R, sPLA2R-Ab or urinary protein and negative correlations between uPLA2R-Ab and serum albumin in patients with IMN. In conclusion, uPLA2R-Ab is a novel biomarker of IMN. sPLA2R-Ab combined with uPLA2R-Ab might be more helpful for diagnosis and activity in PLA2R associated MN.

3.
Oncotarget ; 8(53): 90748-90765, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207601

RESUMEN

Polyclonal anti-human thymocyte globulins (ATG) have been recently shown to significantly reduce the incidence of graft versus host disease (GVHD) post allogeneic stem cell transplantation (HSCT) from both sibling and unrelated donors. Induction of regulatory T cells has been suggested as one of the possible mechanisms. The aim of current study was to further characterize the T cell populations induced by ATG treatment and to delineate the mechanisms involved in ATG-induced tolerance. Phenotypic characterization revealed a significant increase in the expression of FoxP3, GITR, CD95, PD-1 and ICOS as well as the complement inhibitory molecules CD55, CD58 and CD59 on CD4+CD25+ T cells upon ATG treatment. Addition of ATG-treated cells to autologous and allogeneic peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/anti-CD28 antibodies resulted in significant inhibition of proliferation. Moreover, T-cell activation and IFNγ secretion were reduced in the presence of ATG-induced Treg cells. The CD4+CD25+CD127-low Treg fraction sorted from ATG-treated culture demonstrated greater suppressive potency than negative fraction. Conditioned medium produced by ATG-treated but not IgG-treated cells contained TGFß and suppressed T cell proliferation and activation in a TGFß receptor-dependent manner. TGFß receptor kinase inhibitor SB431542 interfered with the suppressive activity of ATG-primed cells, enabling partial rescue of proliferation and IFNγ secretion. Moreover, SB431542 prevented Treg phenotype induction upon ATG treatment. Altogether, our data reveal the role of TGFß signaling in ATG-mediated immunosuppression and further support the use of ATG, a potent inducer of regulatory T cells, for prevention of GVHD post HSCT and potentially other therapeutic applications.

4.
Oncotarget ; 8(31): 50415-50429, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881572

RESUMEN

Interferon-γ (Interferon gamma, IFNG) is an important cytokine involved in providing resistance to mycobacterial diseases. Common variants of IFNG, such as IFNG +874 T/A(rs2430561), may be related to tuberculosis susceptibility, but this association has not been consistently observed. We performed an updated meta-analysis to evaluate the association between the IFNG +874 T/A (rs2430561) polymorphism and tuberculosis susceptibility. PubMed and SinoMed databases were searched up to October 2016, and odds ratios (OR) and 95% confidence intervals (CI) were used to assess the association strength. Based on search criteria for manuscripts reporting tuberculosis susceptibility and its relationship with the IFNG +874 T/A(rs2430561)polymorphism, 42 case-control studies from 39 different articles were retrieved. Significantly positive, decreased, and protective associations were found between the IFNG +874 T/A(rs2430561)polymorphism and tuberculosis risk in five genetic models. Moreover, in the stratified subgroup analysis, a protective relationship was detected in four different ethnicities and sources of the control groups. Furthermore, the IFNG +874 T/A(rs2430561)polymorphism played an important role in protecting individuals from both pulmonary tuberculosis and extra-pulmonary tuberculosis. Our meta-analysis suggests that the IFNG +874 T/A(rs2430561)polymorphism is potentially associated with tuberculosis susceptibility and may be used as a predictive biomarker. Further studies with larger sample sizes and consideration of gene-environment interactions should be conducted to elucidate the role of IFNG +874 T/A(rs2430561) polymorphism in tuberculosis susceptibility.

5.
Oncotarget ; 8(31): 50430-50446, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881573

RESUMEN

It has been reported that excessive intake of fluoride can induce renal lesions. However, its pathogenesis is still less understood. Therefore, this study was conducted to investigate oxidative damage and the relationships between the oxidative damage and renal lesions in fluoride-treated mice by using the methods of histopathology, biochemistry, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). A total of 240 ICR mice were randomly divided into four equal groups (sodium fluoride was given orally at the dose of 0, 12, 24 and 48 mg/kg body weight for 42 days, respectively). We found that fluoride in excess of 12 mg/kg induced renal oxidative damage, which was characterized by increasing the levels of reactive oxygen species (ROS) production and contents of malondialdehyde (MDA) and protein carbonyls (PC), and decreasing the abilities of anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR), glutathione (GSH) content, as well as activities and mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px). Concurrently, fluoride caused degeneration and necrosis of the tubular cells, renal tubular hyaline casts and glomeruli swelling, which were consistent with the alteration of renal function parameters including elevated contents of serum creatinine (Cr), serum uric acid (UA), blood urea nitrogen (BUN), and the activities of urinary N-acetyl-b-D-glucosaminidase (NAG), renal lactate dehydrogenase (LDH), and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and acid phosphatase (ACP) in the kidney. The above-mentioned results showed that fluoride in excess of 12 mg/kg induced renal oxidative damage, which then caused renal lesions and dysfunctions. These findings also clearly demonstrated that oxidative damage is one of the mechanisms of fluoride-induced renal lesions and dysfunctions.

6.
Oncotarget ; 8(32): 52072-52077, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881714

RESUMEN

BACKGROUND: ANCA associated vasculitides (AAV) often present with a chronic relapsing course. Relapse leads to increased immunosuppressive exposure and consequent toxicity. While two randomized controlled trials have shown rituximab (RTX) to be the most effective induction treatment in patients with relapsing disease, the optimal treatment duration and RTX dose remain debated. Whether to administer a maintenance dose to every patient, at a fixed time interval or on the basis of B cell count and ANCA titre or only when disease manifestations do occur is still debated as well. METHODS: 11 patients (5 with granulomatosis with polyangiitis, 4 with microscopic polyangiitis-MPA-, and 2 with eosinophilic granulomatosis with polyangiitis -EGPA-) intolerant or refractory to conventional therapies including cyclophosphamide were enrolled. All patients received the so called "improved 4+2" RTX scheme as a rescue therapy. Following RTX administration, immunosuppressive drugs were rapidly tapered and no immunosuppressive maintenance therapy had been given. RESULTS: After a mean follow-up of 85 months since the "4+2" RTX protocol: four out of 11 patients (37%, 1 EGPA and 3 MPA, all MPO-positive) remained in remission after one cycle of "4+2" RTX infusion protocol with no relapse for a median 66 months [60-108]). Seven relapsing patients were re-treated once with RTX (again as monotherapy with the same protocol) after a median of 54 months (24-96). Following re-treatment, they again showed complete remission over a median of 32 months (12-96) of observation. CONCLUSION: In one of the longest-term observation (85 months) studies, sustained clinical remission without immunosuppressive maintenance therapy (and a negligible dose of prednisone since the 5thmonth) was obtained by the "4 + 2" RTX infusion protocol in patients with ANCA-associated vasculitis intolerant or refractory to conventional therapy.

7.
Oncotarget ; 8(34): 55877-55888, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915559

RESUMEN

Innate lymphoid cells (ILCs) play a central role conferring protection at the mucosal frontier. In this study, we have identified a requirement of the transcription factor Zbtb1 for the development of RORγt+ ILCs (ILC3s). Zbtb1-deficient mice lacked NKp46+ ILC3 cells in the lamina propria of the small and large intestine. This requirement of Zbtb1 was cell intrinsic, as NKp46+ ILC3s were not generated from Zbtb1-deficient progenitors in bone marrow chimeras and Zbtb1-deficient RORγt+ CCR6-NKp46- ILC3s didn't generate NKp46+ ILC3s in co-cultures with OP9-DL1 stroma. In correlation with this impairment, Zbtb1-deficient ILC3 cells failed to upregulate T-bet expression, and to acquire IFN-γ production characteristic of NKp46+ cells. Finally, absence of NKp46+ILC3 cells combined with the absence of T-cells in Zbtb1-deficient mice, led to a transient susceptibility to C. rodentium infections. Altogether, these results establish that Zbtb1 is essential for the development of NKp46+ ILC3 cells.

8.
Oncotarget ; 8(34): 55958-55966, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915566

RESUMEN

The treatment of drug-resistant infections is complicated and the alarming rise in infectious diseases poses a unique challenge for development of effective therapeutic strategies. Antibiotic-induced liberation of the bacterial endotoxin lipopolysaccharide (LPS) may have immediate adverse effects promoting septic shock in patients. In the present study, we first confirmed our previous finding that looped antimicrobial peptide CLP-19 exerts non-specific direct antibacterial activity with no toxic to mammalian cells and second revealed that CLP-19 has synergistic effect to enhance the antibacterial activities of other conventional bactericidal (ampicillin and ceftazidime) and bacteriostatic (erythromycin and levofloxacin) agents. Third, the underlying mechanism of antibiotic effect was likely associated with stimulation of hydroxyl radical generation. Lastly, CLP-19 was shown to effectively reduce the antibiotic-induced liberation of LPS, through direct neutralization of the LPS. Thus, CLP-19 is a potential therapeutic agent for combinatorial antibiotic therapy.

9.
Oncotarget ; 8(34): 55967-55983, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915567

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease mainly characterized by cartilage degradation. Interleukin-1ß (IL-1ß) contributes to OA pathogenesis by enhancing oxidative stress and inflammation. Melatonin reportedly elicits potent protection against OA. However, the role of melatonin and underlying mechanism in IL-1ß-stimulated chondrocytes remain largely unclear. In this study, we found that melatonin inhibited IL-1ß-induced toxicity and sirtuin 1 (Sirt1) enhancement in human chondrocytes. Melatonin reduced the IL-1ß-increased nicotinamide phosphoribosyltransferase (NAMPT) expression and the NAD+ level in chondrocytes in a Sirt1-dependent manner. In turn, the inhibitory effect of melatonin on Sirt1 was mediated by NAMPT. Moreover, melatonin suppressed IL-1ß-induced Sirt1-mediated matrix metalloproteinase (MMP)-3 and MMP-13 production. Melatonin also decreased the Sirt1-steered nuclear factor of activated T cells 5 (NFAT5) expression in IL-1ß-challenged chondrocytes. NFAT5 depletion mimicked the suppressive effects of melatonin on IL-1ß-elevated production of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1ß, prostaglandin E2 (PGE2), and nitric oxide (NO) in chondrocytes. TNF-α, IL-1ß, PGE2, or NO decrease caused the similar reduction of MMP-3 and MMP-13 by melatonin in IL-1ß-insulted chondrocytes. Highly consistent with in vitro findings, in vivo results demonstrated that melatonin repressed the expression of relevant genes in rat OA pathogenesis in anterior cruciate ligament transection model. Overall, these results indicate that melatonin effectively reduced IL-1ß-induced MMP production by inhibiting Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes, suggesting melatonin as a potential therapeutic alternative for chondroprotection of OA patients.

10.
Oncotarget ; 8(8): 12649-12663, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28187436

RESUMEN

Dishevelled (Dvl) not only links the canonical Wnt and non-canonical Wnt pathways but can also crosstalk with other pathways. As there is no systematic study to date on Dvl in rheumatoid arthritis (RA), we explored the impact of Dvl2 on proliferation and inflammatory cytokine secretion in RA fibroblast-like synoviocytes (FLSs). Expression of Dvl2 in RA synovial tissue and RA-FLSs was measured. Dvl2 was overexpressed in collagen-induced arthritis rats and human RA-FLSs,. the apoptosis and secretion of inflammatory cytokines were observed. Genetic changes and corresponding mechanisms caused by overexpressing Dvl2 in RA-FLSs were assessed. Dvl2 was found to be overexpressed in RA synovial tissue and RA-FLSs. Overexpression of Dvl2 increased apoptosis and inhibited inflammatory cytokine secretion by RA-FLSs in vivo and in vitro, and Dvl2 inhibited expression of anti-apoptotic and inflammatory genes. One possible mechanism is that Dvl2 decreases the nuclear translocation of P65 and inhibits its ability to bind to the promoters of NF-κB target genes. Our findings reveal an underappreciated role of Dvl2 in regulating inflammation and RA-FLS apoptosis and provide insight into crosstalk between the Wnt and nuclear factor-κB (NF-κB) pathways.


Asunto(s)
Apoptosis/fisiología , Artritis Reumatoide/metabolismo , Proteínas Dishevelled/metabolismo , FN-kappa B/metabolismo , Sinoviocitos/metabolismo , Animales , Artritis Reumatoide/patología , Western Blotting , Separación Celular , Citocinas/biosíntesis , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Inflamación/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cross-Talk/fisiología , Transducción de Señal/fisiología
11.
Oncotarget ; 8(9): 14306-14313, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147328

RESUMEN

INTRODUCTION: Primary Sjogren's Syndrome (pSS) is one of the autoimmune diseases characterized by polyclonal autoantibody production. The human homologue of the mouse double minute 2 (MDM2) is an important negative regulator of p53. Our previous study indicated that autoantibody to MDM2 can be detected in systemic lupus erythematosus patients. The purpose of this study is to study anti-MDM2 autoantibody in pSS patients. METHODS: Anti-MDM2 autoantibody in sera from 100 pSS patients and 74 normal controls was investigated by ELISA. Positive samples were further confirmed by western blotting. Expression of MDM2 in labial gland tissue from pSS patients and normal controls was checked by immunohistochemistry. The difference in clinical characteristics and laboratory findings between anti-MDM2 positive and anti-MDM2 negative pSS patients was analyzed. RESULTS: The presence of anti-MDM2 autoantibody in pSS patients was 21.0%, significantly higher than normal controls (5.40%). MDM2 was overexpressed in labial gland from pSS patients. pSS patients with positive anti-MDM2 were characterized by longer disease duration and more lymphocytes focal gathering in labial gland. Prevalence of anemia, thrombocytopenia and anti-SSB was significantly higher in pSS patients with anti-MDM2 autoantibody. Titer of anit-MDM2 was negatively associated with hemoglobin level, platelet count, complement 3 level and complement 4 level, positively associated with European Sjogren's syndrome disease activity index (ESSDAI) and level of IgG. CONCLUSIONS: Anti-MDM2 autoantibody may be used as a potential serological biomarker in pSS disease activity evaluation. Study on the role of anti-MDM2 or MDM2 in pSS may help us know the pathogenesis mechanism of pSS better.


Asunto(s)
Autoanticuerpos/sangre , Biomarcadores/sangre , Proteínas Proto-Oncogénicas c-mdm2/inmunología , Síndrome de Sjögren/sangre , Autoanticuerpos/inmunología , Western Blotting , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/inmunología
12.
Oncotarget ; 8(11): 17551-17561, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28147332

RESUMEN

Thymic atrophy occurs during infection being associated with apoptosis of double positive (DP) and premature exit of DP and double negative (DN) thymocytes. We observed for the first time that a significant bone marrow aplasia and a decrease in common lymphoid progenitors (CLPs) preceded thymic alterations in mice infected with Trypanosoma cruzi. In addition, depletion of the DN2 stage was previous to the DN1, indicating an alteration in the differentiation from DN1 to DN2 thymocytes. Interestingly, infected mice deficient in IL-6 expression showed higher numbers of DP and CD4+ thymocytes than wild type infected mice, while presenting similar percentages of DN1 thymocytes. Moreover, the drop in late differentiation stages of DN thymocytes was partially abrogated in comparison with wild type littermates. Thus, our results suggest that thymic atrophy involves a drop in CLPs production in bone marrow and IL-6-dependent and independent mechanisms that inhibits the differentiation of DN thymocytes.


Asunto(s)
Diferenciación Celular/inmunología , Enfermedad de Chagas/patología , Interleucina-6/metabolismo , Linfopoyesis/inmunología , Timocitos/patología , Timo/patología , Animales , Atrofia , Médula Ósea/patología , Enfermedad de Chagas/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Etiquetado Corte-Fin in Situ , Células Progenitoras Linfoides/citología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trypanosoma cruzi
13.
Oncotarget ; 8(11): 17562-17572, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28177888

RESUMEN

Histone deacetylation, reciprocally mediated by histone deacetylases (HDAC) and acetyltransferases, represents one major form of post-translational modification. Previous research indicates that HDACs play an essential regulatory role in the development of various immune cells. However, the specific function of individual HDACs remains largely unexplored. HDAC4, a member of class II HDACs, profoundly investigated in the nervous system, while the expression profile and function of HDAC4 in T cells are barely known. For the first time, we report here that HDAC4 is expressed in the multiple T cell lineages. Using T-cell-specific HDAC4-deficient mice, we discovered that lack of HDAC4 did not alter the frequencies of conventional T cells, invariant NKT (iNKT) cells or regulatory T cells within both the thymus and secondary lymphoid organs. Moreover, conventional T cells and iNKT cells from wild-type and HDAC4-deficient mice displayed no significant difference in cytokine production. In conclusion, our results imply that under steady stage, HDAC4 is not required for the development and function of multiple T cell lineages, including conventional T cells and iNKT cells.


Asunto(s)
Linaje de la Célula/inmunología , Histona Desacetilasas/inmunología , Linfopoyesis/inmunología , Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Separación Celular , Femenino , Citometría de Flujo , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Reacción en Cadena de la Polimerasa , Linfocitos T/metabolismo
14.
Oncotarget ; 8(33): 53916-53934, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903312

RESUMEN

Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013-2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1ß and interferon-α/ß. In contrast, neonates born to GNP-GAPDH1-22-vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH1-22 antibodies, suggesting good induction of LM-specific memory.

15.
Oncotarget ; 8(33): 53935-53947, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903313

RESUMEN

Listeria monocytogenes (L. monocytogenes), which is a facultative intracellular bacterial pathogen that causes listeriosis, is widely used to study the mammalian immune response to infection. After phagocytosis by professional phagocytes, L. monocytogenes is initially contained within phagosomes, which mature into phagolysosomes, where the bacteria are degraded. Although phagocytosis and subsequent phagosome maturation is essential for the clearance of infectious microbial pathogens, the underlying regulatory mechanisms are still unclear. SNX10 (Sorting nexin 10) has the simplest structure of the SNX family and has been reported to regulate endosomal morphology, which might be crucial for macrophage function, including phagocytosis and digestion of pathogens, inflammatory response, and antigen presentation. Our results showed that SNX10 expression was upregulated following L. monocytogenes infection in macrophages. It was also revealed that SNX10 promoted phagosome maturation by recruiting the Mon1-Ccz1 complex to endosomes and phagosomes. As a result, SNX10 deficiency decreased the bacterial killing ability of macrophages, and SNX10-deficient mice showed increased susceptibility to L. monocytogenes infection in vivo. Thus, this study revealed an essential role of SNX10 in controlling bacterial infection.

16.
Oncotarget ; 8(39): 64878-64891, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029398

RESUMEN

The present study was carried out to determine whether low dose of zinc oxide nanoparticles (Nano-ZnO) could serve as a potential substitute of pharmacological dose of traditional ZnO in weaned piglets. 180 crossbred weaning piglets were randomly assigned to 3 treatments. Experimental animals were fed basal diet supplemented with 0 mg Zn/kg (Control), 600 mg Zn/kg (Nano-ZnO) and 2000 mg Zn/kg (ZnO) for 14 days. On day 14 after weaning, the piglets fed Nano-ZnO did not differ from those fed traditional ZnO in growth performance and jejunal morphology, while Nano-ZnO treatment could significantly alleviate the incidence of diarrhea (P < 0.05). In jejunum, the mRNA expressions of intestinal antioxidant enzymes and tight junction proteins were increased (P < 0.05) in Nano-ZnO treatment. In ileum, the expression levels of IFN-γ, IL-1ß, TNF-α and NF-κB were decreased (P < 0.05). Gene sequencing analysis of 16S rRNA revealed that dietary Nano-ZnO increased the bacterial richness and diversity in ileum, while decreased both of them in cecum and colon. Specifically, the relative abundances of Streptococcus in ileum, Lactobacillus in colon were increased, while the relative abundances of Lactobacillus in ileum, Oscillospira and Prevotella in colon were decreased (P < 0.05). In conclusion, our data reveal that low dose of Nano-ZnO (600 mg Zn/kg) can effectively reduce piglet diarrhea incidence, similar to high dose of traditional ZnO (2000 mg Zn/kg), which may be mediated by improving intestinal microbiota and inflammation response in piglets, and help to reduce zinc environmental pollution.

17.
Oncotarget ; 8(21): 34099-34110, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28415764

RESUMEN

Tec kinase, a prototypical member of the Tec tyrosine kinases family, was shown to mainly govern lymphocyte proliferation. In the present study, we investigated the role of Tec kinase in acute inflammatory response in lipopolysaccharide (LPS) challenge. First, we demonstrate that Tec kinase activity was observed in RAW264.7 macrophages exposed to LPS. Tec and phosphorylated Tec expression were upregulated in a dose- and time-dependent manner after LPS stimulation. LPS increased monocyte chemotactic protein (MCP)-1 secretion and intercellular adhesion molecule (ICAM)-1 expression, and increasing mRNA expression was consistently observed. LPS also induced IκBα phoshporylaytion and its degradation, increased NF-κB p65 phoshporylaytion and translocation to nuclei in RAW264.7 cells. Pretreatment with LFM-A13 decreased LPS-induced cytokines and chemokines production and mRNA levels, blocked NF-κB transactivation. These effects of LPS were also prevented by Tec-siRNA. Additionally, LFM-A13 or Tec-siRNA obviously inhibited LPS-induced TGFß-activated kinase 1(TAK1) phosphorylation. Taken together, our results suggest that Tec kinase involves in acute inflammation process in LPS-stimulated RAW264.7 cells, at least mediated by activating TAK1/ NF-κB signal pathway.


Asunto(s)
Amidas/farmacología , Citocinas/metabolismo , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Nitrilos/farmacología , Proteínas Tirosina Quinasas/metabolismo , Animales , Macrófagos/citología , Macrófagos/inmunología , Ratones , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
18.
Oncotarget ; 8(22): 35542-35557, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28415767

RESUMEN

Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Epigénesis Genética , Impresión Genómica , Isoantígenos/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Biomarcadores , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Metilación de ADN , Femenino , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal , Trasplante de Piel , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timocitos/inmunología , Timocitos/metabolismo , Timo/inmunología , Timo/metabolismo
19.
Oncotarget ; 8(20): 32407-32418, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28415811

RESUMEN

IL-10 is an immunosuppressive cytokine produced and sensed by many immune cells and exerts a protective role in autoimmune diseases. However, the underlying mechanism by which IL-10 contributes to prevent the arthritic inflammation in macrophages is poorly understood. Herein we report on a novel anti-arthritic property of IL-10 through the inhibition of IL-33 signaling by macrophages during collagen-induced arthritis (CIA) development. We show that IL-33 expression rather than its receptor (ST2) is positively correlated with IL-10 level in active RA. IL-10 deficiency in mice leads to significant upregulation of IL-33 expression and aggravates the progression of CIA, while exogenous IL-10 treatment effectively diminishes IL-33 production in IL-10 knockout (IL-10-/-) CIA mice. We demonstrate further that the inhibitory effect of IL-10 in suppressing IL-33 production requires STAT3 activation in macrophages. Furthermore, IL-33 stimulated proinflammatory genes are notably increased in IL-10-/- CIA mice, whereas macrophages treated with recombinant IL-10 exhibit decreased IL-33 amplified inflammation and inhibited IL-33 activated NF-κB signaling pathway. Our findings indicate that IL-10 act as a negative regulator of IL-33/ST2 signaling pathways in vivo, suggesting a potential therapeutic role of IL-10 in autoimmune diseases.


Asunto(s)
Artritis Reumatoide/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-10/metabolismo , Interleucina-33/metabolismo , Macrófagos/metabolismo , Animales , Artritis Reumatoide/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/deficiencia , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Persona de Mediana Edad
20.
Oncotarget ; 8(52): 89475-89485, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163764

RESUMEN

Ketamine is widely used in animals and humans as a systemic anesthetic. Although several immune-modulatory functions of ketamine have been reported, the effects of ketamine on the differentiation of Th17 cell are unknown. We found that ketamine significantly diminished the frequency of IL-17-producers among CD4+ T cells stimulated under Th17-skewing conditions. Mechanistic studies showed that ketamine had little effect on the production of Th17-inducing cytokines by dendritic cells and the proliferation of T cells in response to anti-CD3; however it significantly hampered IL-21 expression as well as STAT3 phosphorylation in T cells upon IL-6 stimulation. Moreover, MOG-reactive CD4+ T cells expanded in the presence of ketamine produced reduced amounts of Th17 cytokines, leading to diminished EAE severity when transferred into TCRß-deficient mice in comparison to those treated with vehicle. These findings demonstrate that ketamine suppresses autoimmune Th17 cell responses by inhibiting the differentiation as well as the reactivation of Th17 cells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda