Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Virol J ; 16(1): 23, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30786887

RESUMEN

BACKGROUND: Polyadenylation influences many aspects of mRNA as well as viral RNA. variable polyadenylation at the 3' end have been reported in RNA viruses. It is interesting to identify the characteristic and potential role of 3' polyadenylation of Wheat yellow mosaic virus (WYMV), which has been reported to contain two genomic RNAs with 3' poly(A) tails and caused severe disease on wheat in East Asia region. METHODS: 3' RACE was used to identify sequences of the 3' end in WYMV RNAs from naturally infected wheat by WYMV. In vitro translation assay was performed to analyze effect of UTRs of WYMV with or without 3'polyadenylation on translation. In vitro replication mediated by WYMV NIb protein were performed to evaluate effect of variable polyadenylation on replication. RESULTS: Variable polyadenylation in WYMV RNAs was identified via 3' RACE. WYMV RNAs in naturally infected wheat in China simultaneously present with regions of long, short, or no adenylation at the 3' ends. The effects of variable polyadenylation on translation and replication of WYMV RNAs were evaluated. 5'UTR and 3'UTR of WYMV RNA1 or RNA2 synergistically enhanced the translation of the firefly luciferase (Fluc) gene in in vitro WGE system, whereas additional adenylates had an oppositive effect on this enhancement on translation mediated by UTRs of WYMV. Additional adenylates remarkably inhibited the synthesis of complementary strand from viral genome RNA during the in vitro replication mediated by WYMV NIb protein. CONCLUSIONS: 3' end of WYMV RNAs present variable polyadenylation even no polyadenylation. 3' polyadenylation have opposite effect on translation mediated by UTRs of WYMV RNA1 or RNA2. 3' polyadenylation have negative effect on minus-strand synthesis of WYMV RNA in vitro. Variable polyadenylation of WYMV RNAs may provide sufficient selection on the template for translation and replication.


Asunto(s)
Virus del Mosaico/genética , Poliadenilación , Triticum/virología , Replicación Viral , China , Virus del Mosaico/fisiología , Enfermedades de las Plantas/virología , Señales de Poliadenilación de ARN 3'/genética , ARN Viral/genética
2.
Virus Genes ; 52(3): 372-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26995219

RESUMEN

Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus, belonging to the Rhadinovirus genus, which is increasingly associated with various problems of the reproductive tract of cattle. In Argentina, analysis of BoHV-4 strains isolated from cervico-vaginal mucus of aborted cows revealed a high genetic divergence among strains, which could be classified in three different groups: Genotype 1 comprises Movar-like strains (European prototype), Genotype 2 includes DN599-like strains (American prototype) and Genotype 3 corresponds to a novel genotype group. Understanding the replication behavior in cell cultures and the molecular characteristics of this pathogen of cattle is critical for the rational design of in vitro experiments. The aim of this work was to quantitatively evaluate the replication properties of different Argentinean BoHV-4 strains and to characterize their phylogenetic relationships. Significant differences were evident among the virus titers of the different BoHV-4 isolates in vitro. The most conserved gene was the major capsid protein (ORF25). The glycoprotein B (gB), glycoprotein H (gH), and thymidine kinsase (TK) genes displayed both synonymous and non-synonymous substitutions, with the highest diversity observed for gB, which displayed amino acid substitutions in 24 out of the 178 positions examined. Strains 09/759, 12/512, and 07/568 presented a deletion encompassing amino acid position 27 to 35, whereas strains 07/435 and 09/227 had a deletion from position 28 to 35. Two strains, 07/435 and 09/227, also displayed the highest divergence compared to the other strains analyzed. This study provides information about the in vitro replication and behavior of nine field isolates of BoHV-4. These findings are relevant since available information on the in vitro growth characteristics of BoHV-4 strains is scarce. The results from this study may also be useful for establishing comparisons with other related viruses.


Asunto(s)
Herpesvirus Bovino 4/aislamiento & purificación , Herpesvirus Bovino 4/fisiología , Replicación Viral/genética , Animales , Argentina , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , ADN Viral/genética , Femenino , Variación Genética , Genotipo , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 4/genética , Filogenia , Timidina Quinasa/genética , Vagina/virología , Frotis Vaginal/veterinaria , Proteínas del Envoltorio Viral/genética
3.
J Viral Hepat ; 22(9): 718-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25644062

RESUMEN

Hepatitis B (HBV) virus infection is characterized by the overproduction of subviral particles (SVP) over infectious Dane particles (VP). Precise regulation of the ratio between these forms is unknown, but its fluctuation may have a clinical impact. An enrichment method was applied to assess the SVP/VP ratio in chronically infected patients (CHB) and to compare the sensitivity of HBs antigen (HBsAg) and DNA detection methods. Plasmas from 9 genotype A-D CHB patients were fractionated on Nycodenz(®) gradients, and both HBV DNA and HBsAg were quantified in each collected fraction using standardized techniques expressed in IU/mL. Infection of primary human hepatocytes (PHHs) was performed with crude or fractionated plasma. Independently of the genotype, all plasmas showed a similar rate-zonal separation profile characterized by a bottom DNA-enriched peak surmounted by HBsAg-enriched fractions. Inoculation of PHH with plasma-derived VP-enriched fractions led to long-lasting production of virus in cell supernatants with a SVP/VP ratio similar to that observed in patient plasmas. In the VP fraction, one IU of HBsAg corresponded to approximately 5 million IU of HBV DNA. Rate-zonal gradient separation directly applied on patient plasma allows a better insight into the distribution of VP in HBeAg-positive CHB carriers. This study highlights the sensitivity difference of the techniques classically used to monitor HBV infection and indicates that VP-associated HBsAg contributes modestly to the overall amount of total circulating HBsAg in CHB. Such a fractionation approach should help to understand the fine regulation of HBsAg production over replication at different stages of CHB.


Asunto(s)
ADN Viral/sangre , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/virología , Adulto , Células Cultivadas , Pruebas Diagnósticas de Rutina/métodos , Hepatocitos/virología , Humanos , Sensibilidad y Especificidad
4.
Viruses ; 15(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37766335

RESUMEN

Sapoviruses, like noroviruses, are single-stranded positive-sense RNA viruses classified in the family Caliciviridae and are recognized as a causative pathogen of diarrhea in infants and the elderly. Like human norovirus, human sapovirus (HuSaV) has long been difficult to replicate in vitro. Recently, it has been reported that HuSaV can be replicated in vitro by using intestinal epithelial cells (IECs) derived from human tissues and cell lines derived from testicular and duodenal cancers. In this study, we report that multiple genotypes of HuSaV can sufficiently infect and replicate in human-induced pluripotent stem cell-derived IECs. We also show that this HuSaV replication system can be used to investigate the conditions for inactivation of HuSaV by heat and alcohol, and the effects of virus neutralization of antisera obtained by immunization with vaccine antigens, under conditions closer to the living environment. The results of this study confirm that HuSaV can also infect and replicate in human normal IECs regardless of their origin and are expected to contribute to future virological studies.


Asunto(s)
Caliciviridae , Células Madre Pluripotentes Inducidas , Norovirus , Sapovirus , Anciano , Lactante , Humanos , Sapovirus/genética , Intestinos , Células Epiteliales
5.
Mol Plant Pathol ; 23(4): 503-515, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918877

RESUMEN

A gene down-regulated in Nicotiana benthamiana after bamboo mosaic virus (BaMV) infection had high identity to the nuclear-encoded chloroplast ferredoxin NADP+ oxidoreductase gene (NbFNR). NbFNR is a flavoenzyme involved in the photosynthesis electron transport chain, catalysing the conversion of NADP+ into NADPH. To investigate whether NbFNR is involved in BaMV infection, we used virus-induced gene silencing to reduce the expression of NbFNR in leaves and protoplasts. After BaMV inoculation, the accumulation of BaMV coat protein and RNA was significantly reduced. The transient expression of NbFNR fused with orange fluorescent protein (OFP) localized in the chloroplasts and elevated the level of BaMV coat protein. These results suggest that NbFNR could play a positive role in regulating BaMV accumulation. Expressing a mutant that failed to translocate to the chloroplast did not assist in BaMV accumulation. Another mutant with a catalytic site mutation could support BaMV accumulation to some extent, but accumulation was significantly lower than that of the wild type. In an in vitro replication assay, the replicase complex with FNR inhibitor, heparin, the RdRp activity was reduced. Furthermore, BaMV replicase was revealed to interact with NbFNR in yeast two-hybrid and co-immunoprecipitation experiments. Overall, these results suggest that NbFNR localized in the chloroplast with functional activity could efficiently assist BaMV accumulation.


Asunto(s)
Virus del Mosaico , Potexvirus , Cloroplastos/metabolismo , Ferredoxinas/metabolismo , Virus del Mosaico/fisiología , NADP/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/genética , Nicotiana/metabolismo
6.
FEBS Open Bio ; 11(4): 1054-1075, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512058

RESUMEN

DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen-based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next-generation sequencing combined with lesion-specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one-polymerase branch, while it is less suited to investigations of homology-related repair processes, such as TSw. Cis-syn cyclobutane pyrimidine dimer photoproducts were replicated with equal efficiency to lesion-free plasmids in vitro, and the majority of TLS on this lesion could be inhibited by a peptide (PIR) specific for the polη-PCNA interaction interface. TLS on 6-4 pyrimidine-pyrimidone photoproduct proved to be inefficient and was slightly facilitated by PIR as well as by a recombinant ubiquitin-binding zinc finger domain of polη in HeLa extract, possibly by promoting polymerase exchange. Supplementation of the extract with recombinant PCNA variants indicated the dependence of TLS on PCNA ubiquitylation. In contrast to active TLS and NER, we found no evidence of successful TSw in cellular extracts. The established methods can promote in vitro investigations of replicative DNA damage bypass.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Daño del ADN , Replicación del ADN , Línea Celular , Células Cultivadas , Reparación del ADN , Orden Génico , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas In Vitro , Plásmidos/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Transfección , Rayos Ultravioleta
7.
ACS Synth Biol ; 10(9): 2179-2186, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34406762

RESUMEN

Reconstitution of the DNA amplification system in microcompartments is the primary step toward artificial cell construction through a bottom-up approach. However, amplification of >100 kbp DNA in micrometer-sized reactors has not yet been achieved. Here, implementing a fully reconstituted replisome of Escherichia coli in micrometer-sized water-in-oil droplets, we developed the in-droplet replication cycle reaction (RCR) system. For a 16 kbp template DNA, the in-droplet RCR system yielded positive RCR signals with a high success rate (82%) for the amplification from single molecule template DNA. The success rate for a 208 kbp template DNA was evidently lower (23%). This study establishes a platform for genome-sized DNA amplification from a single copy of template DNA with the potential to build more complex artificial cell systems comprising a large number of genes.


Asunto(s)
ADN/metabolismo , Gotas Lipídicas/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistema Libre de Células , ADN/genética , Cartilla de ADN/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-32266240

RESUMEN

Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.

9.
Front Microbiol ; 8: 2046, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093706

RESUMEN

On inoculation of Nicotiana benthamiana with Bamboo mosaic virus (BaMV), a gene with downregulated expression was found involved in the infection cycle of BaMV. To uncover how this downregulated gene affects the accumulation of BaMV in plants, we used loss- and gain-of-function experiments. Knockdown of this gene decreased the accumulation of BaMV coat protein to approximately 60% in both plants and protoplasts of N. benthamiana but had no effect on Potato virus X and Cucumber mosaic virus infection. The full-length gene was cloned and revealed as an N. benthamiana nuclear-encoded chloroplast carbonic anhydrase (CA) and so designated NbCA. As compared with the accumulation of BaMV RNAs in NbCA-knockdown protoplasts, both plus- and minus-strand RNAs were reduced. We further fused NbCA with Orange fluorescent protein to confirm its localization in chloroplasts on confocal microscopy. However, transiently expressed NbCA in chloroplasts did not considerably increase BaMV accumulation. The addition of exogenous CA may not have any additive effect on BaMV accumulation because of the natural abundance of CA in chloroplasts. In an in vitro replication assay, the addition of Escherichia coli-expressed NbCA enhanced exogenous template level (re-initiation and elongation) but not endogenous template level (only elongation). These results suggest that NbCA is possibly involved in re-initiation step of BaMV RNA replication. Further analysis indicated that proton concentration could influence the endogenous and exogenous template activities. Hence, our results implied that NbCA could be playing a role in harnessing proton concentration and favoring the replicase with the re-initiation template.

10.
Viruses ; 9(10)2017 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991178

RESUMEN

Semliki Forest virus (SFV) is an arthropod-borne alphavirus that induces membrane invaginations (spherules) in host cells. These harbor the viral replication complexes (RC) that synthesize viral RNA. Alphaviruses have four replicase or nonstructural proteins (nsPs), nsP1-4, expressed as polyprotein P1234. An early RC, which synthesizes minus-strand RNA, is formed by the polyprotein P123 and the polymerase nsP4. Further proteolytic cleavage results in a late RC consisting of nsP1-4 and synthesizing plus strands. Here, we show that only the late RCs are highly active in RNA synthesis in vitro. Furthermore, we demonstrate that active RCs can be isolated from both virus-infected cells and cells transfected with the wild-type replicase in combination with a plasmid expressing a template RNA. When an uncleavable polyprotein P123 and polymerase nsP4 were expressed together with a template, high levels of minus-strand RNA were produced in cells, but RCs isolated from these cells were hardly active in vitro. Furthermore, we observed that the uncleavable polyprotein P123 and polymerase nsP4, which have previously been shown to form spherules even in the absence of the template, did not replicate an exogenous template. Consequently, we hypothesize that the replicase proteins were sequestered in spherules and were no longer able to recruit a template.


Asunto(s)
Poliproteínas/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Virus de los Bosques Semliki/enzimología , Virus de los Bosques Semliki/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Artrópodos/virología , Regulación Viral de la Expresión Génica , Procesamiento Proteico-Postraduccional , ARN Viral/metabolismo , Virus de los Bosques Semliki/genética , Replicación Viral
11.
Viruses ; 8(3): 68, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26950140

RESUMEN

Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.


Asunto(s)
Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Membranas/metabolismo , Membranas/virología , Tombusvirus/fisiología , Replicación Viral , Modelos Biológicos , Saccharomyces cerevisiae/virología
12.
Curr Protoc Microbiol ; 38: 14F.2.1-19, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26237107

RESUMEN

Merkel cell polyomavirus (MCPyV) genomes are clonally integrated in tumor cells of ∼95% of all Merkel cell carcinoma (MCC) cases. The virus is highly prevalent; however, where the virus persists and which cell types are permissive for MCPyV replication is still unknown. As a consequence, very little information is available about the life cycle and no fully permissive in vitro replication system has been established. Recently, semi-permissive replication systems based on wild-type MCPyV genomes recovered from the skin of healthy donors or synthetic MCPyV genomes constructed from consensus sequences have been established. The transfection of this intramolecular re-circularized MCPyV DNA into some human cell lines recapitulates efficient DNA replication of the viral genome, viral gene expression as well as moderate levels of virus particle formation. However, serial transmission of infectious virus is still restricted in these cells.


Asunto(s)
Replicación del ADN , Poliomavirus de Células de Merkel/fisiología , Replicación Viral , Línea Celular , Humanos , Poliomavirus de Células de Merkel/genética , Biología Molecular/métodos , Virología/métodos
13.
Clin Microbiol Infect ; 21(7): 710.e11-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25882358

RESUMEN

An important driving force behind the sequence diversity of hepatitis B virus (HBV) is viral adaptation to host immune responses. To gain an insight into the impact of host immunity on genetic diversification and properties of HBV, we characterized HBV of genotype D from treatment-naive hepatitis B e antigen-positive (EP) and hepatitis B e antigen-negative (EN) patients with chronic hepatitis B (CHB), where HBV is under stronger immune pressure, with that of HBV derived from human immunodeficiency virus (HIV)/HBV-coinfected individuals, where HIV infection has significantly weakened the immune system. Full-length sequence analysis showed that HBV heterogeneity was most extensive in EN-CHB followed by EP-CHB and HIV/HBV coinfection. The relative magnitude of non-synonymous changes within B-cell epitopes was greater than that in T-cell epitopes of HBV open reading frames (ORFs) in both EP-CHB and EN-CHB. Nine amino acid substitutions were identified in B-cell epitopes and one in a T-cell epitope of HBV in EN-CHB, most of which resulted in altered hydrophobicities, as determined using the Kyte and Doolittle method, relative to wild-type residues found in HBV from the HIV-positive group. Additionally, 19 substitutions occurred at significantly higher frequencies in non-epitope regions of HBV ORF-P in EN-CHB than HIV/HBV-coinfected patients. In vitro replication assay demonstrated that the substitutions, particularly in reverse transcriptase and RNaseH domains of ORF-P, resulted in a decline in replication capacity of HBV. Hence, our results indicate that HBV adapts to increasing immune pressure through preferential mutations in B-cell epitopes and by replicative attenuation. The viral epitopes linked to immune response identified in this study bear important implications for future HBV vaccine studies.


Asunto(s)
Adaptación Biológica , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Mutación Missense , Replicación Viral , Adolescente , Adulto , Anciano , Sustitución de Aminoácidos , Niño , Coinfección/inmunología , Coinfección/virología , Femenino , Variación Genética , Genotipo , Infecciones por VIH/complicaciones , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/aislamiento & purificación , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/inmunología , Humanos , Masculino , Persona de Mediana Edad , Selección Genética , Análisis de Secuencia de ADN , Adulto Joven
14.
J Virol Methods ; 203: 54-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24681050

RESUMEN

Hepatitis B virus (HBV) is hyperendemic to southern Africa, with genotype A of HBV being the predominant genotype, and subgenotype A1 prevailing. Infection with this subgenotype is associated with rapid disease progression, and high frequency of hepatocellular carcinoma development. The objectives of our study was to construct recombinant 1.28 mer replication competent HBV DNA plasmids of subgenotypes A1, A2 and D3 containing authentic endogenous HBV promoters and to follow their replication in vitro after transfection of Huh7 cells. We found that subgenotype D3 replicated at a lower level, as measured by HBsAg and HBV DNA levels, when compared to cells transfected with genotype A. There was no difference in the intracellular and extracellular HBsAg between cells transfected with subgenotypes A1 or A2. Cells transfected with subgenotype A1 had higher levels of intracellular replicative intermediates and HBcAg, and lower extracellular expression of HBeAg from days 1 to 3, when compared to cells transfected with subgenotype A2. In conclusion, the generation of these replication competent clones is an important step in the functional characterization of subgenotypes of HBV circulating in Africa and their comparison to strains circulating in other geographical regions of the world.


Asunto(s)
Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Regiones Promotoras Genéticas , Replicación Viral , Línea Celular , Genotipo , Antígenos de la Hepatitis B/análisis , Hepatocitos/virología , Humanos , Plásmidos , Transfección
15.
Hepatol Int ; 7(2): 443-50, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26201776

RESUMEN

INTRODUCTION: Hepatitis B virus (HBV) can be classified into ten genotypes (A-J), with genotypes B and C being the most common in Asia. Recent data suggest that the HBV genotype can influence disease progression, and genotype C has been associated with more aggressive liver disease than that of other genotypes. Although there is a preventative vaccine, chronic infection remains a public health problem with oral nucleos(t)ide analog therapy being the most common treatment. The HBV genome is composed of four partially overlapping reading frames, meaning that substitutions in the HBV polymerase selected during NA therapy may also alter the overlapping HBV surface antigen (HBsAg). We have recently shown that for HBV genotype D, the rtA181T/sW172stop substitution conferring resistance to adefovir dipivoxil (ADV) alters secretion of HBsAg and exerts a dominant-negative effect on wild-type virion secretion. However, the effect of this and other ADV-resistance-associated mutations on HBV replication and HBsAg secretion for the HBV genotype C, the genotype with the most severe clinical prognosis, is unknown. METHODS/RESULTS: We constructed 1.2-mer infectious cDNA clones of HBV genotype C encoding mutations associated with ADV resistance and established an in vitro replication assay in Huh7 cells. Decreased levels of HBV DNA and HBsAg were detected for all ADV variants relative to the 1.2-mer wild-type polymerase control plasmid. Importantly, less HBsAg was detected in the cells transfected with the rtA181T resistance mutants, and the overlapping sW172stop mutation ablated secretion of HBsAg into cell culture supernatants. CONCLUSIONS: The identification of secretion-defective HBV in the setting of ADV therapy for HBV genotype C, and to a lesser extent HBV genotype B, has major implications for the diagnosis and treatment of HBV in the Asia-Pacific region, as it is likely that quantitative HBsAg and viral load testing of serum from patients infected with HBV encoding rtA181T and rtN236T substitutions may not accurately reflect the level of replication within hepatocytes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda