Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35.019
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(21): 5919-5934.e19, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39357521

RESUMEN

Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.


Asunto(s)
Dióxido de Carbono , Diatomeas , Fotosíntesis , Diatomeas/metabolismo , Diatomeas/genética , Dióxido de Carbono/metabolismo , Microscopía por Crioelectrón , Cloroplastos/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Ciclo del Carbono
2.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172562

RESUMEN

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Técnicas de Cultivo de Tejidos , Animales , Humanos , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Técnicas de Cultivo de Tejidos/métodos
3.
Cell ; 185(15): 2756-2769, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868278

RESUMEN

For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.


Asunto(s)
Modelos Biológicos , Organoides , Animales , Humanos
4.
Cell ; 185(20): 3770-3788.e27, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179669

RESUMEN

Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.


Asunto(s)
Corteza Cerebral , Organoides , Diferenciación Celular , Corteza Cerebral/metabolismo , Humanos , Neurogénesis , Neuronas , Organoides/metabolismo
5.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34133942

RESUMEN

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Asunto(s)
ADN/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Microscopía por Crioelectrón , ADN/ultraestructura , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa II/ultraestructura , Eliminación de Secuencia , Factor de Transcripción TFIIH , Factores de Transcripción TFII/metabolismo
6.
Cell ; 182(5): 1140-1155.e18, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814015

RESUMEN

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fusión de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , Endosomas/metabolismo , Células HeLa , Humanos , Polimerizacion , Transporte de Proteínas/fisiología
7.
Annu Rev Biochem ; 88: 281-306, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30566372

RESUMEN

Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.


Asunto(s)
Eucariontes/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón , Humanos , Biogénesis de Organelos , Multimerización de Proteína
8.
Cell ; 175(3): 796-808.e14, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340043

RESUMEN

During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Huso Acromático/metabolismo , Animales , Humanos , Cinesinas/química , Microtúbulos/química , Células Sf9 , Huso Acromático/química , Spodoptera
9.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648660

RESUMEN

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Asunto(s)
Endocitosis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Animales , Fenómenos Biomecánicos , Fricción , Humanos , Metabolismo de los Lípidos , Dominios Proteicos , Ratas
10.
Cell ; 167(3): 709-721.e12, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768892

RESUMEN

Chromatin remodelers regulate genes by organizing nucleosomes around promoters, but their individual contributions are obfuscated by the complex in vivo milieu of factor redundancy and indirect effects. Genome-wide reconstitution of promoter nucleosome organization with purified proteins resolves this problem and is therefore a critical goal. Here, we reconstitute four stages of nucleosome architecture using purified components: yeast genomic DNA, histones, sequence-specific Abf1/Reb1, and remodelers RSC, ISW2, INO80, and ISW1a. We identify direct, specific, and sufficient contributions that in vivo observations validate. First, RSC clears promoters by translating poly(dA:dT) into directional nucleosome removal. Second, partial redundancy is recapitulated where INO80 alone, or ISW2 at Abf1/Reb1sites, positions +1 nucleosomes. Third, INO80 and ISW2 each align downstream nucleosomal arrays. Fourth, ISW1a tightens the spacing to canonical repeat lengths. Such a minimal set of rules and proteins establishes core mechanisms by which promoter chromatin architecture arises through a blend of redundancy and specialization.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/química , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Cromatina/química , Cromatina/genética , ADN de Hongos/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genoma Fúngico , Histonas/química , Histonas/genética , Poli dA-dT/química , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
11.
Annu Rev Biochem ; 83: 221-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905782

RESUMEN

For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.


Asunto(s)
Ritmo Circadiano/fisiología , Cianobacterias/fisiología , Proteínas Bacterianas/fisiología , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Homeostasis , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Temperatura , Transcripción Genética
12.
Annu Rev Cell Dev Biol ; 31: 317-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566114

RESUMEN

Correct and timely lineage decisions are critical for normal embryonic development and homeostasis of adult tissues. Therefore, the search for fundamental principles that underlie lineage decision-making lies at the heart of developmental biology. Here, we review attempts to understand lineage decision-making as the interplay of single-cell heterogeneity and gene regulation. Fluctuations at the single-cell level are an important driving force behind cell-state transitions and the creation of cell-type diversity. Gene regulatory networks amplify such fluctuations and define stable cell types. They also mediate the influence of signaling inputs on the lineage decision. In this review, we focus on insights gleaned from in vitro differentiation of embryonic stem cells. We discuss emerging concepts, with an emphasis on transcriptional regulation, dynamical aspects of differentiation, and functional single-cell heterogeneity. We also highlight some novel tools to study lineage decision-making in vitro.


Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias/fisiología , Humanos , Transducción de Señal/genética
13.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270916

RESUMEN

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Asunto(s)
Bacillus subtilis/citología , Citidina Trifosfato/metabolismo , Pirofosfatasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , División Celular/genética , División Celular/fisiología , Membrana Celular/metabolismo , Cromosomas Bacterianos/genética , Citidina Trifosfato/fisiología , Proteínas del Citoesqueleto/genética , Pirofosfatasas/fisiología
14.
EMBO J ; 43(21): 5169-5185, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39322757

RESUMEN

Enzymatic parameters are classically determined in vitro, under conditions that are far from those encountered in cells, casting doubt on their physiological relevance. We developed a generic approach combining tools from synthetic and systems biology to measure enzymatic parameters in vivo. In the context of a synthetic carotenoid pathway in Saccharomyces cerevisiae, we focused on a phytoene synthase and three phytoene desaturases, which are difficult to study in vitro. We designed, built, and analyzed a collection of yeast strains mimicking substantial variations in substrate concentration by strategically manipulating the expression of geranyl-geranyl pyrophosphate (GGPP) synthase. We successfully determined in vivo Michaelis-Menten parameters (KM, Vmax, and kcat) for GGPP-converting phytoene synthase from absolute metabolomics, fluxomics and proteomics data, highlighting differences between in vivo and in vitro parameters. Leveraging the versatility of the same set of strains, we then extracted enzymatic parameters for two of the three phytoene desaturases. Our approach demonstrates the feasibility of assessing enzymatic parameters directly in vivo, providing a novel perspective on the kinetic characteristics of enzymes in real cellular conditions.


Asunto(s)
Saccharomyces cerevisiae , Biología Sintética , Biología de Sistemas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética/métodos , Biología de Sistemas/métodos , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Cinética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Carotenoides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
EMBO J ; 42(23): e113955, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850882

RESUMEN

Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.


Asunto(s)
Epigénesis Genética , Oocitos , Femenino , Animales , Ratones , Folículo Ovárico , Oogénesis/genética , Células Germinativas
16.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
17.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39382939

RESUMEN

Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.


Asunto(s)
Animales Salvajes , Biodiversidad , Conservación de los Recursos Naturales , Investigación con Células Madre , Animales , Conservación de los Recursos Naturales/métodos , Células Madre/citología
18.
Trends Immunol ; 45(1): 32-47, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135599

RESUMEN

The human immune system is a complex network of coordinated components that are crucial for health and disease. Animal models, commonly used to study immunomodulatory agents, are limited by species-specific differences, low throughput, and ethical concerns. In contrast, in vitro modeling of human immune responses can enable species- and population-specific mechanistic studies and translational development within the same study participant. Translational accuracy of in vitro models is enhanced by accounting for genetic, epigenetic, and demographic features such as age, sex, and comorbidity. This review explores various human in vitro immune models, considers evidence that they may resemble human in vivo responses, and assesses their potential to accelerate and de-risk vaccine discovery and development.


Asunto(s)
Vacunación , Vacunas , Animales , Humanos , Inmunidad
19.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849388

RESUMEN

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Asunto(s)
Anticuerpos/metabolismo , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligopéptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Automatización de Laboratorios , Sitios de Unión de Anticuerpos , Catálisis , Análisis Mutacional de ADN/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Cinética , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Oligopéptidos/genética , Análisis por Matrices de Proteínas/instrumentación , Unión Proteica , Ingeniería de Proteínas , Flujo de Trabajo
20.
Mol Cell ; 74(2): 268-283.e5, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30902546

RESUMEN

Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteína p300 Asociada a E1A/genética , Proteínas/genética , Transcripción Genética , Acetilación , Linfocitos B/química , Sitios de Unión , Factor de Unión a CCCTC/química , Antígenos CD40/genética , Cromatina/química , Cromatina/genética , Proteína p300 Asociada a E1A/química , Código de Histonas , Histonas/química , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleosomas/química , Nucleosomas/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Proteínas/química , ARNt Metiltransferasas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda