Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.170
Filtrar
Más filtros

Publication year range
1.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652115

RESUMEN

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Asunto(s)
Simulación de Dinámica Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Factor A de Crecimiento Endotelial Vascular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Medicina de Precisión/métodos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Unión Proteica , Simulación del Acoplamiento Molecular
2.
Plant J ; 115(1): 139-154, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36995901

RESUMEN

Heterosis has been widely used in multiple crops. However, the molecular mechanism and prediction of heterosis remains elusive. We generated five F1 hybrids [four showing better-parent heterosis (BPH) and one showing mid-parent heterosis], and performed the transcriptomic and methylomic analyses to identify the candidate genes for BPH and explore the molecular mechanism of heterosis and the potential predictors for heterosis. Transcriptomic results showed that most of the differentially expressed genes shared in the four better-parent hybrids were significantly enriched into the terms of molecular function, and the additive and dominant effects played crucial roles for BPH. DNA methylation level, especially in CG context, significantly and positively correlated with grain yield per plant. The ratios of differentially methylated regions in CG context in exons to transcription start sites between the parents exhibited significantly negative correlation with the heterosis levels of their hybrids, as was further confirmed in 24 pairwise comparisons of other rice lines, implying that this ratio could be a feasible predictor for heterosis level, and this ratio of less than 5 between parents in early growth stages might be a critical index for judging that their F1 hybrids would show BPH. Additionally, we identified some important genes showing differential expression and methylation, such as OsDCL2, Pi5, DTH2, DTH8, Hd1 and GLW7 in the four better-parent hybrids as the candidate genes for BPH. Our findings helped shed more light on the molecular mechanism and heterosis prediction.


Asunto(s)
Oryza , Humanos , Perfilación de la Expresión Génica , Vigor Híbrido/genética , Oryza/genética , Transcriptoma/genética
3.
BMC Plant Biol ; 24(1): 171, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443839

RESUMEN

BACKGROUND: Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS: In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS: This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.


Asunto(s)
Lagerstroemia , Lagerstroemia/genética , Antocianinas , Perfilación de la Expresión Génica , Genómica , Flavonoides/genética
4.
BMC Plant Biol ; 24(1): 676, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009989

RESUMEN

Tilletia indica Mitra causes Karnal bunt (KB) in wheat by pathogenic dikaryophase. The present study is the first to provide the draft genomes of the dikaryon (PSWKBGD-3) and its two monosporidial lines (PSWKBGH-1 and 2) using Illumina and PacBio reads, their annotation and the comparative analyses among the three genomes by extracting polymorphic SSR markers. The trancriptome from infected wheat grains of the susceptible wheat cultivar WL711 at 24 h, 48h, and 7d after inoculation of PSWKBGH-1, 2 and PSWKBGD-3 were also isolated. Further, two transcriptome analyses were performed utilizing T. indica transcriptome to extract dikaryon genes responsible for pathogenesis, and wheat transcriptome to extract wheat genes affected by dikaryon involved in plant-pathogen interaction during progression of KB in wheat. A total of 54, 529, and 87 genes at 24hai, 48hai, and 7dai, respectively were upregulated in dikaryon stage while 21, 35, and 134 genes of T. indica at 24hai, 48hai, and 7dai, respectively, were activated only in dikaryon stage. While, a total of 23, 17, and 52 wheat genes at 24hai, 48hai, and 7dai, respectively were upregulated due to the presence of dikaryon stage only. The results obtained during this study have been compiled in a web resource called TiGeR ( http://backlin.cabgrid.res.in/tiger/ ), which is the first genomic resource for T. indica cataloguing genes, genomic and polymorphic SSRs of the three T. indica lines, wheat and T. indica DEGs as well as wheat genes affected by T. indica dikaryon along with the pathogenecity related proteins of T. indica dikaryon during incidence of KB at different time points. The present study would be helpful to understand the role of dikaryon in plant-pathogen interaction during progression of KB, which would be helpful to manage KB in wheat, and to develop KB-resistant wheat varieties.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Perfilación de la Expresión Génica , Genoma Fúngico , Interacciones Huésped-Patógeno/genética
5.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853268

RESUMEN

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Asunto(s)
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenoles , Raíces de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fenoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores del Crecimiento de las Plantas/metabolismo , Agrobacterium
6.
BMC Plant Biol ; 24(1): 208, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519933

RESUMEN

BACKGROUND: Mango (Mangifera indica L.) faces escalating challenges from increasing drought stress due to erratic climate patterns, threatening yields, and quality. Understanding mango's drought response mechanisms is pivotal for resilience and food security. RESULTS: Our RNA-seq analyses unveil 12,752 differentially expressed genes linked to stress signaling, hormone regulation, and osmotic adjustment. Weighted Gene Co-expression Network Analysis identified three essential genes-WRKY transcription factor 3, polyamine oxidase 4, and protein MEI2-like 1-as drought defense components. WRKY3 having a role in stress signaling and defense validates its importance. Polyamine oxidase 4, vital in stress adaptation, enhances drought defense. Protein MEI2-like 1's significance emerges, hinting at novel roles in stress responses. Metabolite profiling illuminated Mango's metabolic responses to drought stress by presenting 990 differentially abundant metabolites, mainly related to amino acids, phenolic acids, and flavonoids, contributing to a deeper understanding of adaptation strategies. The integration between genes and metabolites provided valuable insights by revealing the correlation of WRKY3, polyamine oxidase 4 and MEI2-like 1 with amino acids, D-sphingnosine and 2,5-Dimethyl pyrazine. CONCLUSIONS: This study provides insights into mango's adaptive tactics, guiding future research for fortified crop resilience and sustainable agriculture. Harnessing key genes and metabolites holds promise for innovative strategies enhancing drought tolerance in mango cultivation, contributing to global food security efforts.


Asunto(s)
Mangifera , Resiliencia Psicológica , Sequías , Mangifera/genética , Perfilación de la Expresión Génica , Aminoácidos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Planta ; 259(5): 121, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615288

RESUMEN

MAIN CONCLUSION: Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.


Asunto(s)
Arabidopsis , Basidiomycota , Quistes , Tylenchoidea , Animales , Endófitos , Carbono , Azúcares
8.
Appl Environ Microbiol ; 90(9): e0084824, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39158313

RESUMEN

Xanthomonas species are major pathogens of plants and have been studied extensively. There is increasing recognition of the importance of non-pathogenic species within the same genus. With this came the need to understand the genomic and functional diversity of non-pathogenic Xanthomonas (NPX) at the species and strain level. This study reports isolation and investigation into the genomic diversity and variation in NPX isolates, chiefly Xanthomonas indica, a newly discovered NPX species from rice. The study establishes the relationship of X. indica strains within clade I of Xanthomonads with another NPX species, X. sontii, also associated with rice seeds. Identification of highly diverse strains, open-pan genome, and systematic hyper-variation at the lipopolysaccharide biosynthetic locus when compared to pathogenic Xanthomonas indicates the acquisition of new functions for adaptation. Furthermore, comparative genomics studies established the absence of major virulence genes such as type III secretion system and effectors, which are present in the pathogens, and the presence of a known bacterial-killing type IV secretion system (X-T4SS). The diverse non-pathogenic strains of X. indica and X. sontii were found to protect rice from bacterial leaf blight pathogen, X. oryzae pv. oryzae (Xoo). The absence of phenotype of an X-T4SS mutant suggests redundancy in the genetic basis of the mechanisms involved in the bioprotection function, which may include multiple genetic loci, such as putative bacteriocin-encoding gene clusters and involvement of other factors such as nutrient and niche competition apart from induction of innate immunity through shared microbial-associated molecular patterns. The rice-NPX community and its pathogenic counterpart can be a promising model for understanding plant-microbe-microbiome interaction studies.IMPORTANCEThe Xanthomonas group of bacteria is known for its characteristic lifestyle as a phytopathogen. However, the discovery of non-pathogenic Xanthomonas (NPX) species is a major shift in understanding this group of bacteria. Multi-strain, in-depth genomic, evolutionary and functional studies on each of these NPX species are still lacking. This study on diverse non-pathogenic strains provides novel insights into genome diversity, dynamics, and evolutionary trends of NPX species from rice microbiome apart from its relationship with other relatives that form a sub-clade. Interestingly, we also uncovered that NPX species protect rice from pathogenic Xanthomonas species. The plant protection property shows their importance as a part of a healthy plant microbiome. Furthermore, finding an open pan-genome and large-scale variation at lipopolysaccharide biosynthetic locus indicates a significant role of the NPX community in host adaptation. The findings and high-quality genomic resources of NPX species and the strains will allow further systematic molecular and host-associated microbial community studies for plant health.


Asunto(s)
Genoma Bacteriano , Genómica , Microbiota , Oryza , Xanthomonas , Xanthomonas/genética , Xanthomonas/clasificación , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Filogenia
9.
Int J Exp Pathol ; 105(1): 33-44, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991201

RESUMEN

This study aimed to investigate the anti-inflammatory and wound healing effects of the polysaccharide extract from Opuntia ficus-indica cladodes (TPL-Ofi) using a rat cutaneous wound model. After anaesthesia, four 7-mm-diameter dorsal wounds per animal (n = 6/group for each experimental day of evaluation) were created in female Wistar rats using a surgical punch. The animals were treated topically twice daily with TPL-Ofi (0.01-1%; treated group) or sterile saline (control group) for a period of 21 days. Ulcerated tissue was collected for analysis of histological parameters (inflammation score, number of polymorphonuclear, mononuclear, fibroblast/myofibroblasts and blood vessels), immunohistochemical (fibroblast growth factor 2 [FGF-2]) and oxidative stress markers (myeloperoxidase [MPO] and glutathione [GSH]). After 21 days of treatment, body weight, net organ weight and plasma biochemical levels were measured. TPL-Ofi, containing a total carbohydrate content of 65.5% and uronic acid at 2.8%, reduced oedema on the second day and increased the nociceptive threshold on the second and third days. TPL-Ofi reduced mononuclear infiltrate on the second and MPO activity on the fifth day. TPL-Ofi increased GSH levels on the second day, as well as fibroblast/myofibroblasts counts, neoangiogenesis and FGF-2 levels on the fifth and seventh days. No changes were observed in body weight, net organ weight or toxicology assessment. Topical application of TPL-Ofi exhibited anti-inflammatory and antinociceptive effects, ultimately improving wound healing in cutaneous wounds.


Asunto(s)
Opuntia , Ratas , Femenino , Animales , Ratas Wistar , Opuntia/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Cicatrización de Heridas , Antiinflamatorios/farmacología , Peso Corporal , Extractos Vegetales/farmacología
10.
J Autoimmun ; 144: 103181, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38522129

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Mangifera , Adulto , Humanos , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Mucosa Intestinal , Modelos Animales de Enfermedad
11.
Mol Ecol ; 33(11): e17368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676602

RESUMEN

Weedy rice, a pervasive and troublesome weed found across the globe, has often evolved through fertilization of rice cultivars with little importance of crop-weed gene flow. In Argentina, weedy rice has been reported as an important constraint since the early 1970s, and, in the last few years, strains with herbicide-resistance are suspected to evolve. Despite their importance, the origin and genetic composition of Argentinian weedy rice as well its adaptation to agricultural environments has not been explored so far. To study this, we conducted genotyping-by-sequencing on samples of Argentinian weedy and cultivated rice and compared them with published data from weedy, cultivated and wild rice accessions distributed worldwide. In addition, we conducted a phenotypic characterization for weedy-related traits, a herbicide resistance screening and genotyped accessions for known mutations in the acetolactate synthase (ALS) gene, which confers herbicide resistance. Our results revealed large phenotypic variability in Argentinian weedy rice. Most strains were resistant to ALS-inhibiting herbicides with a high frequency of the ALS mutation (A122T) present in Argentinian rice cultivars. Argentinian cultivars belonged to the three major genetic groups of rice: japonica, indica and aus while weeds were mostly aus or aus-indica admixed, resembling weedy rice strains from the Southern Cone region. Phylogenetic analysis supports a single origin for aus-like South American weeds, likely as seed contaminants from the United States, and then admixture with local indica cultivars. Our findings demonstrate that crop to weed introgression can facilitate rapid adaptation to agriculture environments.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , Argentina , Acetolactato Sintasa/genética , Malezas/genética , Fenotipo , Genotipo , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Flujo Génico , Agricultura , Mutación
12.
Photosynth Res ; 162(1): 29-45, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168914

RESUMEN

Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.


Asunto(s)
Electrodos , Fotosíntesis , Transporte de Electrón , Fluorescencia , Fotosíntesis/fisiología , Cianobacterias/metabolismo , Cianobacterias/fisiología , Luz
13.
Microb Pathog ; 190: 106635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579934

RESUMEN

The plant Erythrina indica comes under Fabaceae family, mainly used for used in traditional medicine as nervine sedative, antiepileptic, antiasthmatic, collyrium in opthalmia, antiseptic. Current study focused synthesize of silver nanoparticles (AgNPs) by E. indica leaf ethanol extract. The green-synthesized AgNPs underwent characterization using multiple analytical techniques, including UV-visible, FTIR, DLS, SEM, TEM, XRD, and EDX, and estimation of their antioxidant activity and antimicrobial activity. Phytochemical analysis identified alkaloids, tannins, saponins, flavonoids, and phenols as secondary metabolites. The Total Phenol Content (TPC) was determined to be 237.35 ± 2.02 mg GAE-1, indicating a substantial presence of phenolic compounds. The presence of AgNPs was verified through UV-Visible analysis at 420 nm, and FT-IR revealed characteristic phenolic functional groups. DLS analysis indicated a narrow size distribution (polydispersity index - PDI: 3.47%), with SEM revealing spherical AgNPs of approximately 20 nm. TEM showed homogeneous, highly polycrystalline AgNPs with lattice spacing at 0.297. XRD analysis demonstrated crystallinity and purity, with distinct reflection peaks corresponding to miller indices of JCPDS card no. 01 087 1473. In vitro, AgNPs exhibited robust antioxidant activity like; DPPH, ABTS, and H2O2, surpassing E. indica-assisted synthesis. ABTS assay indicated higher antioxidant activity (81.94 ± 0.05%) for AgNPs at 734 nm, while E. indica extraction showed 39.67 ± 0.07%. At 532 nm, both E. indica extraction (57.71 ± 0.11%) and AgNPs (37.41 ± 0.17%) exhibited H2O2 scavenging. Furthermore, AgNPs displayed significant antimicrobial properties, inhibiting Staphylococcus aureus (15.7 ± 0.12 mm) and Candida albicans (10.7 ± 0.17 mm) byfor the concentration of 80 µg/mL. Through the characterizations underscore of the potential of Erythrina indica-synthesized AgNPs, rich in polyphenolic compounds, for pharmacological, medical, biological applications and antipyretic properties.


Asunto(s)
Antiinfecciosos , Antioxidantes , Erythrina , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Plata , Plata/química , Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Erythrina/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Hojas de la Planta/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Fenoles/química , Fenoles/farmacología , Difracción de Rayos X , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisis , Tecnología Química Verde , Candida albicans/efectos de los fármacos , Taninos/farmacología , Taninos/química
14.
Genetica ; 152(2-3): 101-117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724749

RESUMEN

DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lagerstroemia , Familia de Multigenes , Proteínas de Plantas , Estrés Salino , Estrés Salino/genética , Lagerstroemia/genética , Proteínas de Plantas/genética , Genoma de Planta , Proteínas del Choque Térmico HSP40/genética , Filogenia , Genómica/métodos
15.
Arch Microbiol ; 206(4): 144, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460008

RESUMEN

Plant-microbe associations have been regarded as an exciting topic of research due to their potential as environment friendly alternatives for stimulating crop growth and development. Seeds of Tamarindus indica L. have been chosen for the present study as seed endophytes prefer larger or nutritive cotyledon and hard seed coats for their colonization. The main objectives of our study were to isolate and identify the seed endophytes, their bioefficacy, and responsible chemical compounds. In a dose-dependent experiment, tamarind seed exudates (TSE) showed plant growth-promoting properties on Oryza sativa (53-81%), Daucus carota (10-31%), and Raphanus sativa (21-42%). Identification of the bacterial load in TSE through 16S rRNA sequencing revealed the existence of two bacterial species, Acinetobacter johnsonii and Niallia nealsonii. This is the first report of these two bacteria as seed endophytes of Tamarindus indica L. HRLC-MS analysis of TSE confirmed the presence of indole derivatives, primarily indole-3-lactic acid (ILA). The quantitative phytochemical estimation of bacterial culture filtrates revealed that indole-like substances were present in the extracts only in A. johnsonii at a concentration of 0.005 mg/ml of indole acetic acid equivalent. Experimental results suggested that the stimulatory activity of TSE was caused by the presence of A. johnsonii, a potential plant growth-promoting bacteria that produced indole-like compounds. This study suggests tamarind seed exudates with its endophytic microbiota as a potent plant growth-promoting agent that may find use as a cheap and sustainable source of metabolites useful in the agro-industries.


Asunto(s)
Acinetobacter , Tamarindus , Tamarindus/química , Endófitos , ARN Ribosómico 16S/genética , Semillas/microbiología , Plantas , Bacterias/genética
16.
Arch Virol ; 169(3): 58, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424260

RESUMEN

In this study, we determined the complete genome sequence of a novel totivirus, tentatively named "Mangifera indica totivirus 1" (MiTV1), identified in 'Apple' mango in China. The double-stranded RNA genome of MiTV1 is 4800 base pairs (bp) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences showed that MiTV1 is closely related to members of the genus Totivirus in the family Totiviridae. To our knowledge, this is the first report of a totivirus found in Mangifera indica.


Asunto(s)
Mangifera , Totivirus , Totivirus/genética , Mangifera/genética , Filogenia , Secuencia de Aminoácidos , ARN Bicatenario , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , Genoma Viral , ARN Viral/genética
17.
Mol Biol Rep ; 51(1): 726, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856802

RESUMEN

BACKGROUND: Karnal bunt of wheat is an important quarantine disease, incited by Tilletia indica. It limits India's trade in wheat export. The teliospores are major source of inoculum to initiate and spread the Karnal bunt disease. The study aimed to identify the germination-related genes in the teliospores of T. indica. METHODS AND RESULTS: The candidate genes in the teliospores germination were identified through the differential gene expression analysis with suitable bioinformatics analysis. Keeping in soil-borne nature of fungi, the teliospores of T. indica (2015 and 2018) were subjected to the qPCR analysis. 20 candidate genes were identified having role in germination of teliospores of T. indica. Twenty genes, viz. Ti9297 (9.31, 7.87-fold), Ti8696 (5.13, 6.54-fold), Ti7699 (8.9, 7.7-fold), Ti7858 (10.33, 6.21-fold), Ti7954 (7.46, 5.54-fold), Ti7739 (5.46, 6.46-fold), Ti9665 (10.74, 7.64-fold), Ti9335 (6.75, 4.36-fold), Ti8396 (9.35, 7.72-fold), Ti8126 (8.87, 11.31-fold), Ti7326 (6.04, 7.7-fold), Ti10208 (13.83, 5.81-fold), Ti12356 (7.83, 8.02-fold), Ti14271 (9.98, 6.32-fold), Ti9234 (11.2, 8.72-fold), Ti 8876 (6.47, 3.55-fold), Ti 10,606 (4.97, 2.35-fold), Ti7758 (10.33, 8.78-fold), Ti4692 (6.89, 9.88-fold), and Ti3932 (5.77, 4.5-fold) were found highly expressed in the germinating teliospores of 2015 and 2018, respectively. Eight genes (Ti508, Ti4152, Ti5346, Ti2375, Ti3739, Ti1134, Ti4399, and Ti4422) were downregulated in the germinating teliospores but these eight genes were showed higher expression in the dormant teliospores. CONCLUSIONS: Twenty candidate genes were upregulated in the germinating teliospores are supposed to be involved in the process of germination. Eight genes were downregulated which were related to the process of the dormancy of teliospores. The study will be helpful to devise the newer management strategies for Karnal bunt disease of wheat.


Asunto(s)
Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Triticum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Esporas Fúngicas/genética , Germinación/genética , Perfilación de la Expresión Génica/métodos , Basidiomycota/genética , Polyporaceae/genética , Biología Computacional/métodos
18.
Environ Res ; 242: 117793, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040176

RESUMEN

This research was performed to assess the influence of Cd and Cr metals on growth, pigments, antioxidant, and genomic stability of Oryza sativa indica and Oryza sativa japonica were investigated under hydroponic conditions. The results revealed that significant metal influence on test crop growth, pigment content, metal stress balancing antioxidant activity in a dose dependent manner. Since, while at elevated (500 ppm) concentration of Cd as well as Cr metals the pigment (total chlorophyll, chlorophyll a, b and carotenoids) level was reduced than control; however antioxidant activity (total antioxidant, H2O2, and NO) was considerably improved as protective mechanisms to combat the metal toxicity and support the plant growth. Furthermore, the test crops under typical hydroponic medium (loaded with Cd and Cr as 200, 300, 400, and 500 ppm) growth conditions, effectively absorb the metals from medium and accumulated in the root and least quantity was translocated to the shoot of this test crops. Furthermore, typical RAPD analysis with 10 universal primers demonstrated that the genomic DNA of the test crops was adaptable to develop metal resistance and ensure crop growth under increased concentrations (500 ppm) of tested heavy metals. These findings suggest that these edible crops have the ability to accumulate Cd along with Cr metals, and additionally that their genetic systems have the ability to adapt to metal-stressed environments.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cromo/toxicidad , Cromo/análisis , Antioxidantes/farmacología , Oryza/genética , Cadmio/toxicidad , Cadmio/análisis , Clorofila A/análisis , Clorofila A/farmacología , Hidroponía , Peróxido de Hidrógeno , Técnica del ADN Polimorfo Amplificado Aleatorio , Metales Pesados/toxicidad , Metales Pesados/análisis , Productos Agrícolas , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
19.
Environ Res ; 243: 117752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008202

RESUMEN

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la Planta
20.
Environ Res ; 251(Pt 2): 118702, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503381

RESUMEN

The anti-inflammatory, anti-diabetic, and biocompatibility nature of Tamarindus indica L. fruit coat aqueous extract were investigated in this research through in-vitro and in-vivo studies. The anti-inflammatory property was determined through albumin denaturation inhibition and antiprotease activities as up to 39.5% and 41.2% respectively at 30 mg mL-1 concentration. Furthermore, the antidiabetic activity was determined through α-amylase and α-glucosidase inhibition as up to 62.15% and 67.35% respectively at 30 mg mL-1 dosage. The albino mice based acute toxicity study was performed by different treatment groups (group I-V) with different dosages of aqueous extract to detect the biocompatibility of sample. Surprisingly, findings revealed that the T. indica L. fruit coat aqueous extract had no harmful impacts on any of the groups. Urine, as well as serum parameter analysis, confirmed this. Moreover, the findings of SOD (Superoxide Dismutase), GST (Glutathione-S-transferase), & CAT (Catalase) as well as glutathione peroxidase as well as reduced glutathione antioxidant enzymes studies stated that the aqueous extract possess high antioxidant ability via a dose-dependent way. These findings indicate that T. indica fruit coat aqueous extract contains medicinally important phytochemicals with anti-inflammatory and anti-diabetic properties, as well as being biocompatible in nature.


Asunto(s)
Antiinflamatorios , Frutas , Hipoglucemiantes , Extractos Vegetales , Tamarindus , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Frutas/química , Tamarindus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda