Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165175

RESUMEN

The insect epidermis forms the exoskeleton and determines the body size of an organism. How the epidermis acts as a metabolic regulator to adapt to changes in dietary protein availability remains elusive. Here, we show that the Drosophila epidermis regulates tyrosine (Tyr) catabolism in response to dietary protein levels, thereby promoting metabolic homeostasis. The gene expression profile of the Drosophila larval body wall reveals that enzymes involved in the Tyr degradation pathway, including 4-hydroxyphenylpyruvate dioxygenase (Hpd), are upregulated by increased protein intake. Hpd is specifically expressed in the epidermis and is dynamically regulated by the internal Tyr levels. Whereas basal Hpd expression is maintained by insulin/IGF-1 signalling, Hpd induction on high-protein diet requires activation of the AMP-activated protein kinase (AMPK)-forkhead box O subfamily (FoxO) axis. Impairment of the FoxO-mediated Hpd induction in the epidermis leads to aberrant increases in internal Tyr and its metabolites, disrupting larval development on high-protein diets. Taken together, our findings uncover a crucial role of the epidermis as a metabolic regulator in coping with an unfavourable dietary environment.


Asunto(s)
Dieta Rica en Proteínas , Drosophila , Animales , Drosophila/metabolismo , Homeostasis , Insulina/metabolismo , Epidermis/metabolismo , Proteínas en la Dieta , Tirosina
2.
Neurobiol Dis ; 184: 106219, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422091

RESUMEN

Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aß42/Aß40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Femenino , Embarazo , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Insulina , Ratones Transgénicos , Ratones Endogámicos C57BL , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
3.
EMBO J ; 38(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30796049

RESUMEN

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi-omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP-saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA-approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short-lived mitochondrial mutant animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/prevención & control , Xantina/administración & dosificación , Xantina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Insulina/química , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Metaboloma , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteoma , Transcriptoma
4.
Biochem Soc Trans ; 51(2): 501-512, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36892215

RESUMEN

Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.


Asunto(s)
Células Germinativas , Factor I del Crecimiento Similar a la Insulina , Insulinas , Proteostasis , Células Germinativas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulinas/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761985

RESUMEN

Animal studies have proven that 1-acetyl-5-phenyl-1H-pyrrol-3-yl acetate (APPA) is a powerful antioxidant as a novel aldose reductase inhibitor independently synthesized by our laboratory; however, there is no current information on APPA's anti-aging mechanism. Therefore, this study examined the impact and mechanism of APPA's anti-aging and anti-oxidation capacity using the Caenorhabditis elegans model. The results demonstrated that APPA increases C. elegans' longevity without affecting the typical metabolism of Escherichia coli OP50 (OP50). APPA also had a non-toxic effect on C. elegans, increased locomotor ability, decreased the levels of reactive oxygen species, lipofuscin, and fat, and increased anti-stress capacity. QRT-PCR analysis further revealed that APPA upregulated the expression of antioxidant genes, including sod-3, gst-4, and hsp-16.2, and the critical downstream transcription factors, daf-16, skn-1, and hsf-1 of the insulin/insulin-like growth factor (IGF) receptor, daf-2. In addition, fat-6 and nhr-80 were upregulated. However, the APPA's life-prolonging effects were absent on the daf-2, daf-16, skn-1, and hsf-1 mutants implying that the APPA's life-prolonging mechanism depends on the insulin/IGF-1 signaling system. The transcriptome sequencing also revealed that the mitochondrial route was also strongly associated with the APPA life extension, consistent with mev-1 and isp-1 mutant life assays. These findings aid in the investigation of APPA's longevity extension mechanism.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insulinas , Animales , Caenorhabditis elegans/metabolismo , Longevidad , Antioxidantes/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulinas/metabolismo , Estrés Oxidativo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
6.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903481

RESUMEN

Polygonati Rhizoma is the dried rhizome of Polygonatum kingianum coll.et hemsl., Polygonatum sibiricum Red. or Polygonatum cyrtonema Hua, and has a long history of medication. Raw Polygonati Rhizoma (RPR) numbs the tongue and stings the throat, while prepared Polygonati Rhizoma (PPR) can remove the numbness of the tongue, and at the same time enhance its functions of invigorating the spleen, moistening the lungs and tonifying the kidneys. There are many active ingredients in Polygonati Rhizoma (PR), among which polysaccharide is one of the most important active ingredients. Therefore, we studied the effect of Polygonati Rhizoma polysaccharide (PRP) on the lifespan of Caenorhabditis elegans (C. elegans) and found that polysaccharide in PPR (PPRP) was more effective than Polysaccharide in RPR (RPRP) in prolonging the lifespan of C. elegans, reducing the accumulation of lipofuscin, and increasing the frequency of pharyngeal pumping and movement. The further mechanism study found that PRP can improve the anti-oxidative stress ability of C. elegans, reduce the accumulation of reactive oxygen species (ROS) in C. elegans, and improve the activity of antioxidant enzymes. The results of quantitative real-time PCR(q-PCR) experiments suggested that PRP may prolong the lifespan of C. elegans by down-regulating daf-2 and activating daf-16 and sod-3, and the transgenic nematode experiments were consistent with its results, so it was hypothesized that the mechanism of age delaying effect of PRP was related to daf-2, daf-16 and sod-3 of the insulin signaling pathway. In short, our research results provide a new idea for the application and development of PRP.


Asunto(s)
Proteínas de Caenorhabditis elegans , Polygonatum , Animales , Caenorhabditis elegans , Longevidad , Rizoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polisacáridos/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo
7.
BMC Microbiol ; 22(1): 162, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733100

RESUMEN

BACKGROUND: Cryptococcosis is a life-threatening infection is primarily caused by two sibling species Cryptococcus neoformans and Cryptococcus gattii. Several virulence-related factors of these cryptococci have been widely investigated in Caenorhabditis elegans, representing a facile in vivo model of host-pathogen interaction. While recent studies elucidated cryptococcal virulence factors, intrinsic host factors that affect susceptibility to infections by cryptococci remain unclear and poorly investigated. RESULTS: Here, we showed that defects in C. elegans insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) pathway influenced animal lifespan and mechanisms of host resistance in cryptococcal infections, which required the activation of aging regulator DAF-16/Forkhead box O transcription factor. Moreover, accumulation of lipofuscin, DAF-16 nuclear localization, and expression of superoxide dismutase (SOD-3) were elevated in C. elegans due to host defenses during cryptococcal infections. CONCLUSION: The present study demonstrated the relationship between longevity and immunity, which may provide a possibility for novel therapeutic intervention to improve host resistance against cryptococcal infections.


Asunto(s)
Proteínas de Caenorhabditis elegans , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Factores de Transcripción Forkhead , Animales , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Cryptococcus gattii/patogenicidad , Cryptococcus neoformans/patogenicidad , Factores de Transcripción Forkhead/genética , Inmunidad , Longevidad , Factores de Virulencia/metabolismo
8.
Immun Ageing ; 19(1): 56, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380393

RESUMEN

Immunosenescence is an age-dependent decline in immune functions and hallmark of aging in diverse species, ranging from invertebrates to mammals. However, identifying the factors responsible for immunosenescence is challenging because of the complexity of immune systems and aging in mammals. The roundworm Caenorhabditis elegans is suitable for understanding immunosenescence because of its simple immune system and rapid aging process. In this review, we discuss the advances in our understanding of immunosenescence in C. elegans. PMK-1/p38 mitogen-activated protein kinase (MAPK), SKN-1/NRF, and ZIP-10/bZIP transcription factor regulate immunosenescence through p38 MAPK and insulin/IGF-1 signaling pathways. Because these factors and pathways are evolutionarily conserved, the findings discussed in this review may help understand the mechanisms underlying immunosenescence and develop new treatment therapy for immunosenescence in humans.

9.
Environ Toxicol ; 37(10): 2529-2539, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35833599

RESUMEN

Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
New Microbiol ; 45(1): 51-61, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35403847

RESUMEN

Candida albicans can cause infections ranging from superficial skin infections to life-threateningsystemic infections in immunocompromised hosts. Although several C. albicans virulence factorsare widely discussed in great detail, intrinsic host determinants that are critical for C. albicanspathogenesis remain less interested and poorly understood. In view of this, a model of Caenorhabditiselegans was used to study host longevity and immunity in response to C. albicans pathogenesis.The influence of C. albicans in pathological and survival aspects was evaluated using C. elegans.C. albicans hyphal formation in different C. elegans genetic backgrounds was evaluated. Moreover,several C. elegans fluorescent proteins as gene expression markers upon C. albicans infectionswere evaluated. C. albicans is pathogenic to C. elegans and reduces the lifespan of C. elegans inassociation with repression of the insulin/IGF-1-like signaling (IIS) pathway. Moreover, repressionof DAF-16/forkhead transcription factor increases aggressiveness of C. albicans by enhancing hyphalformation. In addition, infection of C. albicans increases lipofuscin accumulation, promotes DAF-16nuclear translocation, increases superoxide dismutase (SOD-3) expression, which coordinately linksbetween aging and innate immunity. Thus, we demonstrate here the strategy to utilize C. elegans asa model host to elucidate host genetic determinants that provide insights into the pathogenesis ofC. albicans infections.


Asunto(s)
Proteínas de Caenorhabditis elegans , Candidiasis , Factores de Transcripción Forkhead , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Candida albicans , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Inmunidad Innata , Insulina/genética , Insulina/metabolismo , Longevidad/genética , Mutación
11.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409099

RESUMEN

Sirtuin-3 (Sirt3) is a major mitochondrial deacetylase enzyme that regulates multiple metabolic pathways, and its expression is decreased in diabetes type 1 and type 2 diabetes. This study aimed to elucidate Sirt3's molecular mechanism in regulating insulin sensitivity in adipocytes that can contribute to the effort of targeting Sirt3 for the treatment of obesity and type 2 diabetes. We found that the Sirt3 activator honokiol (HNK) induced adipogenesis compared to the control, in contrast to Sirt3 inhibitor, 3-TYP. Accordingly, HNK increased expression of adipocyte gene markers, gene-involved lipolysis and glucose transport (GLUT4), while 3-TYP reduced expression of those genes. Interestingly, 3-TYP caused an increase in gene expression of adipocyte-specific cytokines including IL6, resistin, and TNF-α. However, changes in adipocyte-specific cytokines in HNK treated cells were not significant. In addition, HNK stimulated insulin pathway by promoting insulin receptor beta (IRß) and PI3K/AKT/mTOR pathways, resulting in an increase in phosphorylation of the forkhead family FoxO1/FoxO3a/FoxO4 and glycogen synthase kinase-3 (GSK-3ß), opposing 3-TYP. In line with these findings, HNK increased free fatty acid and glucose uptake, contrary to 3-TYP. In conclusion, Sirt3 activator-HNK induced adipogenesis and lipolysis reduced adipocytes specific cytokines. Intriguingly, HNK activated insulin signaling pathway and increased free fatty acid as well as glucose uptake and transport, in sharp contrast to 3-TYP. These results indicate that, via insulin signaling regulation, Sirt3 activation by HNK improves insulin resistance, while Sirt3 inhibition by 3-TYP might precipitate insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Sirtuina 3 , Adipocitos/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234702

RESUMEN

Ellagic acid is a natural polyphenol found in various fruits and vegetables. Numerous studies have shown that ellagic acid has beneficial effects on human health. In this study, we investigated the stress resistant action of ellagic acid in Caenorhabditis elegans (C. elegans). Notably, 50 µM ellagic acid prolonged the lifespan of C. elegans by 36.25%, 36.22%, 155.1%, and 79.07% under ultraviolet radiation stress, heat stress, oxidative stress, and Pseudomonas aeruginosa infection stress, respectively. Furthermore, the mechanism by which ellagic acid reduces the damage caused by ultraviolet radiation in C. elegans was explored. Ellagic acid could significantly induce the nucleus translocation of DAF-16 and, thereby, activate a series of target genes to resist ultraviolet radiation stress. Moreover, ellagic acid also significantly increased the expression of SOD-3 by 3.61 times and the activity of superoxide dismutase by 3.70 times to clean out harmful reactive oxygen species in C. elegans exposed to ultraviolet radiation stress. In both daf-16 mutant and daf-2; daf-16 double-mutant worms exposed to ultraviolet radiation, ellagic acid could no longer prolong their lifespan. These results indicate that ellagic acid plays an important role in resisting ultraviolet radiation stress in C. elegans, probably in an insulin/IGF-1 signaling pathway-dependent way.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Elágico/farmacología , Factores de Transcripción Forkhead/genética , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Estrés Oxidativo , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta/efectos adversos
13.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924155

RESUMEN

Ferulic acid (FA) is a naturally-occurring well-known potent antioxidant and free radical scavenger. FA supplementation is an effective strategy to delay aging, but the underlying mechanism remains unknown. In the present study, we examined the effects of FA on lifespan extension and its mechanism of FA in Caenorhabditis elegans (C. elegans). Results suggested that FA increased the lifespan of C. elegans, rather than altering the growth of E. coli OP50. Meanwhile, FA promoted the healthspan of C. elegans by improving locomotion and reducing fat accumulation and polyQ aggregation. FA increased the resistance to heat and oxidative stress through reducing ROS. The upregulating of the expression of the hlh-30, skn-1, and hsf-1 were involved in the FA-mediated lifespan extension. Furthermore, FA treatment had no impact on the lifespan of daf-2, hlh-30, skn-1, and hsf-1 mutants, confirming that insulin/IGF-1 signaling pathway and multiple longevity mechanisms were associated with the longevity mechanism of FA. We further found that mitochondrial signaling pathway was modulation involved in FA-mediated lifespan extension. With the results from RNA-seq results and mutants lifespan assay. These findings contribute to our knowledge of the lifespan extension and underlying mechanism of action of FA in C. elegans.


Asunto(s)
Ácidos Cumáricos/administración & dosificación , Suplementos Dietéticos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Longevidad , Transducción de Señal , Estrés Fisiológico , Animales , Autofagia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208601

RESUMEN

Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-ß1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Neoplasias Colorrectales/metabolismo , Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/terapia , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/prevención & control , Factores de Riesgo
15.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830338

RESUMEN

Insulin/IGF-1-like signaling (IIS) plays a crucial, conserved role in development, growth, reproduction, stress tolerance, and longevity. In Caenorhabditis elegans, the enhanced longevity under reduced insulin signaling (rIIS) is primarily regulated by the transcription factors (TFs) DAF-16/FOXO, SKN-1/Nrf-1, and HSF1/HSF-1. The specific and coordinated regulation of gene expression by these TFs under rIIS has not been comprehensively elucidated. Here, using RNA-sequencing analysis, we report a systematic study of the complexity of TF-dependent target gene interactions during rIIS under analogous genetic and experimental conditions. We found that DAF-16 regulates only a fraction of the C. elegans transcriptome but controls a large set of genes under rIIS; SKN-1 and HSF-1 show the opposite trend. Both of the latter TFs function as activators and repressors to a similar extent, while DAF-16 is predominantly an activator. For expression of the genes commonly regulated by TFs under rIIS conditions, DAF-16 is the principal determining factor, dominating over the other two TFs, irrespective of whether they activate or repress these genes. The functional annotations and regulatory networks presented in this study provide novel insights into the complexity of the gene regulatory networks downstream of the IIS pathway that controls diverse phenotypes, including longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Genoma de los Helmintos , Insulina/metabolismo , Factores de Transcripción/genética , Transcriptoma , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Longevidad/genética , Anotación de Secuencia Molecular , Fenotipo , Transducción de Señal , Factores de Transcripción/metabolismo
16.
EMBO Rep ; 19(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29945933

RESUMEN

Reducing insulin/IGF-1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin-1 (cav-1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav-1 expression and lessens the quantity of neuronal caveolae. Reduced cav-1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging-regulating and signaling-promoting genes. Our findings define caveolae as aging-governing signaling centers and underscore the potential for cav-1 as a novel therapeutic target for the promotion of healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Caenorhabditis elegans/metabolismo , Caveolas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Caveolas/ultraestructura , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Respuesta al Choque Térmico , Longevidad , Modelos Biológicos , Proteostasis , Interferencia de ARN , Factores de Transcripción/metabolismo , Rayos Ultravioleta
17.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266495

RESUMEN

Aging induces several stress response pathways to counterbalance detrimental changes associated with this process. These pathways include nutrient signaling, proteostasis, mitochondrial quality control and DNA damage response. At the cellular level, these pathways are controlled by evolutionarily conserved signaling molecules, such as 5'AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), insulin/insulin-like growth factor 1 (IGF-1) and sirtuins, including SIRT1. Peroxisome proliferation-activated receptor coactivator 1 alpha (PGC-1α), encoded by the PPARGC1A gene, playing an important role in antioxidant defense and mitochondrial biogenesis, may interact with these molecules influencing lifespan and general fitness. Perturbation in the aging stress response may lead to aging-related disorders, including age-related macular degeneration (AMD), the main reason for vision loss in the elderly. This is supported by studies showing an important role of disturbances in mitochondrial metabolism, DDR and autophagy in AMD pathogenesis. In addition, disturbed expression of PGC-1α was shown to associate with AMD. Therefore, the aging stress response may be critical for AMD pathogenesis, and further studies are needed to precisely determine mechanisms underlying its role in AMD. These studies can include research on retinal cells produced from pluripotent stem cells obtained from AMD donors with the mutations, either native or engineered, in the critical genes for the aging stress response, including AMPK, IGF1, MTOR, SIRT1 and PPARGC1A.


Asunto(s)
Envejecimiento , Degeneración Macular/etiología , Daño del ADN , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668705

RESUMEN

The nematode Caernohabditis elegans was introduced as a model organism in biological research by Sydney Brenner in the 1970s. Since then, it has been increasingly used for investigating processes such as ageing, oxidative stress, neurodegeneration, or inflammation, for which there is a high degree of homology between C. elegans and human pathways, so that the worm offers promising possibilities to study mechanisms of action and effects of phytochemicals of foods and plants. In this paper, the genes and pathways regulating oxidative stress in C. elegans are discussed, as well as the methodological approaches used for their evaluation in the worm. In particular, the following aspects are reviewed: the use of stress assays, determination of chemical and biochemical markers (e.g., ROS, carbonylated proteins, lipid peroxides or altered DNA), influence on gene expression and the employment of mutant worm strains, either carrying loss-of-function mutations or fluorescent reporters, such as the GFP.


Asunto(s)
Antioxidantes/farmacología , Biomarcadores/metabolismo , Caenorhabditis elegans/fisiología , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Molecules ; 24(24)2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31847478

RESUMEN

The problem of an aging society is becoming increasingly acute. Diseases related to aging also come with it. There are some diseases that people can't treat fundamentally. Therefore, people try to find a natural ingredient from natural medicine to treat these diseases and improve the quality of life of the elderly. With the screening of a large number of traditional Chinese medicines, we found that polysaccharides from Rehmannia glutinous (PRG) can prolong the lifespan of Caenorhabditis elegans (C. elegans). Neutral polysaccharide is the main component of PRG. In the present study, we used a C. elegans model to illustrate the stress resistance and lifespan extension effect and mechanism of two kinds of neutral polysaccharide fractions from Rehmannia glutinosa (NPRG), respectively called NPRRP and NPRR. Our data showed that two kinds of neutral polysaccharides fractions could extend the lifespan and delay senescence of wild-type worms. Moreover, the mechanism study revealed that NPRG was able to promote the nuclear localization of DAF-16 resulting in the activation of antioxidant enzymatic systems under oxidative stress. We also observed that NPRG didn't increase the lifespan of mutants with daf-16 portion loss of function, suggesting NPRG prolonging the lifespan partially required the daf-16 gene on the insulin/IGF-1 signaling pathway (IIS). NPRG was found to have no effect on Escherichia coli OP50 (E.coli OP50) growth and pharyngeal pump movement of nematodes, indicating that the anti­aging effect of NPRG is not realized by the caloric restriction. However, mRNA levels of daf-2 were remarkably decreased after NPRG treatment. Thus daf-2 lost its inhibitory effect on the expression of daf-16 and had a continuous stimulation effect on the IIS, then prolonged the life of nematodes. Overall, our results illustrated the potential utilization of NPRG as a functional pharmaceutical ingredient to increase stress resistance and extend the life of C. elegans via the IIS, which could be developed as a natural supplement agent.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Polisacáridos/farmacología , Rehmannia/química , Animales , Biomarcadores , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mortalidad , Estrés Oxidativo/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Polisacáridos/química , Transducción de Señal/efectos de los fármacos , Análisis Espectral
20.
Gerontology ; 64(1): 96-104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28934747

RESUMEN

The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal "healthspan" has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Longevidad/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Diapausa/genética , Diapausa/fisiología , Insulina/genética , Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/fisiología , Longevidad/genética , Modelos Biológicos , Mutación , Receptor de Insulina/genética , Receptor de Insulina/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda