Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Environ Manage ; 364: 121428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879966

RESUMEN

The use of wetland plants in the context of phytoremediation is effective in the removal of antibiotics from contaminated water. However, the effectiveness and efficiency of many of these plants in the removal of antibiotics remain undetermined. In this study, the effectiveness of two plants-Phragmites australis and Iris pseudacorus-in the removal of tetracycline (TC) in hydroponic systems was investigated. The uptake of TC at the roots of I. pseudacorus and P. australis occurred at concentrations of 588.78 and 106.70 µg/g, respectively, after 7-day exposure. The higher uptake of TC in the root of I. pseudacorus may be attributed to its higher secretion of root exudates, which facilitate conditions conducive to the reproduction of microorganisms. These rhizosphere-linked microorganisms then drove the TC uptake, which was higher than that in the roots of P. australis. By elucidating the mechanisms underlying these uptake-linked outcomes, we found that the uptake of TC for both plants was significantly suppressed by metabolic and aquaporin inhibition, suggesting uptake and transport of TC were active (energy-dependent) and passive (aquaporin-dominated) processes, respectively. The subcellular distribution patterns of I. pseudacorus and P. australis in the roots were different, as expressed by differences in organelles, cell wall concentration levels, and transport-related dynamics. Additionally, the microbe-driven enhancement of the remediation capacities of the plants was studied comprehensively via a combined microbial-phytoremediation hydroponic system. We confirmed that the microbial agents increased the secretion of root exudates, promoting the variation of TC chemical speciation and thus enhancing the active transport of TC. These results contribute toward the improved application of wetland plants in the context of antibiotic phytoremediation.


Asunto(s)
Biodegradación Ambiental , Raíces de Plantas , Tetraciclina , Humedales , Tetraciclina/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Rizosfera , Hidroponía
2.
J Environ Manage ; 300: 113703, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34509818

RESUMEN

Wetland plants play a major role in the process of wastewater treatment in constructed wetlands (CWs). The inhibitory effect of salt stress on plants may reduce the performance of CWs. In this study, salicylic acid (SA) and/or calcium ion (Ca2+) were used for root pretreatment to alleviate the salt stress in Iris pseudacorus L. The results showed that root pretreatment with SA and/or Ca2+ improved the response of Iris pseudacorus L. to salinity by increasing growth, photosynthetic pigments, Pro content, enzymes activities and K+ content. In addition, SA and/or Ca2+ application in saline conditions decreased the relative conductivity and content of malondialdehyde. RNA-seq analysis showed the expression of hormone signaling genes, potassium ion transporter genes, oxidative stress genes and photosynthesis genes were up-regulated after pretreating with SA and CaCl2. In conclusion, the addition of SA and Ca2+ could improve the saline wastewater treatment efficiency of CWs by enhancing the salt tolerance of Iris pseudacorus L.


Asunto(s)
Género Iris , Humedales , Cloruro de Calcio , Género Iris/genética , Ácido Salicílico/farmacología , Tolerancia a la Sal/genética
3.
Ecotoxicol Environ Saf ; 193: 110306, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32109586

RESUMEN

The impact of iron plaque (IP) on bioavailability of heavy metals to plants has been well documented, but the role of zinc (Zn) in modulating the associated processes remains elusive. We took Iris pseudacorus used in wetland for remediating Cd-contaminated water as an example and systematically studied the combined influence of Cd and Zn concentration on formation of IP and its consequence for immobilization and plant uptake of Cd. The experiment was conducted in hydroponic culture and in each treatment, we measured the physiological traits, activity of antioxidant enzymes (SOD, POD, CAT), mass of the IP, as well as the Cd content in both plant tissues and IP. The results showed that increasing Cd concentration resulted in a steady reduction in IP while the impact of zinc on IP was complicated and appeared to be coupled with Cd. When the Cd concentration was low (0.5 mg L-1 measured as CdCl2 2·5H2O) increasing Zn concentration reduced IP, while when the Cd concentration was increased to 5 mg L-1 increasing zinc concentration led to an increase in IP mass first followed by a decline after Zn concentration exceeded 100 mg L-1 (measured as ZnSO4·7H2O). The change in IP as affected by Zn had a strong consequence for immobilization and plant uptake of Cd. When Cd concentration was low, the IP was comparatively abundant and hence adsorbed most Cd. In contrast, when Cd concentration was high, the IP reduced and the amount of Cd taken up by plant roots and translocated to shoots and leaves increased. Both Cd immobilization and its plant uptake were modulated by Zn concentration. At low Cd concentration the combined Cd immobilized and taken up by plant peaked when the Zn concentration was 50 mg L-1, while at high Cd concentration the combined Cd reached maxima when theZn concentration was 100 mg L-1. The activity of the antioxidant enzymes changed significantly with Zn rather than with Cd. Regardless of Cd concentration, the activity of all three antioxidant enzymes increased first with zinc concentration before declining when the Zn concentration exceeded approximately 100 mg L-1 in all treatments, comparable with the change in immobilization and plant uptake of Cd as the Zn concentration increased. SEM analysis did prove the formation and variation of IP on the root surface of Iris pseudacorus in different treatments. We also found that the plant developed a survival strategy by scarifying its leaves with high Cd content. The results presented in this paper has wide implications as it revealed that care needs to be taken in applying Zn to enhance Cd immobilization and its plant uptake as exceeding the optimal application rate might reduce remediating efficiency rather than increase it.


Asunto(s)
Cadmio/toxicidad , Género Iris/efectos de los fármacos , Hierro/análisis , Contaminantes Químicos del Agua/toxicidad , Zinc/farmacología , Adsorción , Cadmio/análisis , Cadmio/metabolismo , Hidroponía , Género Iris/crecimiento & desarrollo , Género Iris/metabolismo , Hierro/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Humedales , Zinc/análisis , Zinc/metabolismo
4.
Am J Bot ; 103(9): 1575-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27613515

RESUMEN

PREMISE OF THE STUDY: Iris pseudacorus spread rapidly into North America after introduction from Europe in the 1800s and now co-occurs with native I. hexagona in freshwater Louisiana wetlands. Native irises support and interact with multiple trophic levels, whereas I. pseudacorus is classified an invasive pest because it grows aggressively, reduces biodiversity, and displaces native vegetation. Salinity levels are increasing in coastal wetlands worldwide. We examined how salt-stress affects competitive interactions between these conspecifics. METHODS: We established a three-way full-factorial common-garden experiment that included species (I. pseudacorus, I. hexagona), competition (no competition, intraspecific competition, and interspecific competition), and salinity (0, 4, 8 parts per thousand NaCl), with six replicates per treatment. KEY RESULTS: After 18 mo, Iris pseudacorus produced much more biomass than the native species did (F1, 92 = 71.5, P < 0.0001). Interspecific competition did not affect the introduced iris, but biomass of the native was strongly reduced (competition × species interaction: F2, 95 = 76.7, P = 0.002). Salinity significantly reduced biomass of both species (F2, 92 = 21.8, P < 0.0001), with no species × salinity interaction (F2, 84 = 1.85, P = 0.16). CONCLUSIONS: Our results demonstrate that salt stress strongly reduced clonal reproduction in native and introduced irises; however, the introduced iris had a competitive advantage over the native, regardless of environmental salinity levels. Based on patterns in clonal reproduction, the introduced iris could potentially threaten native iris populations. We are currently investigating seed production and mortality during competition and stress because both clonal and sexual reproduction must be considered when predicting long-term population dynamics.


Asunto(s)
Género Iris/fisiología , Salinidad , Cloruro de Sodio/farmacología , Humedales , Biomasa , Relación Dosis-Respuesta a Droga , Agua Dulce , Especies Introducidas , Género Iris/efectos de los fármacos , Género Iris/crecimiento & desarrollo , Dinámica Poblacional , Reproducción Asexuada/efectos de los fármacos
5.
Int J Phytoremediation ; 17(9): 814-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25529785

RESUMEN

Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.


Asunto(s)
Género Iris/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Aguas Salinas/química , Cloruro de Sodio/química , Contaminantes del Suelo/metabolismo , Estuarios , Eutrofización , Tolerancia a la Sal , Factores de Tiempo , Humedales
6.
J Environ Manage ; 147: 108-23, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25262393

RESUMEN

Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system. Wild plant species growing in aquatic bodies at industrial outfalls could constitute suitable tolerant species to use in CWs for industrial effluent treatment. To test this hypothesis, we assessed, under laboratory conditions (using an experimental design), the tolerance to mixtures of metals (Al, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Sn, Zn) or/and organic pollutants (THC, PHE, PYR, LAS) of five European sub-cosmopolitan native macrophytes (Alisma lanceolatum, Carex cuprina, Epilobium hirsutum, Iris pseudacorus and Juncus inflexus) that had been collected in a polluted Mediterranean wetland, after a field study (crossing ecological relevés and analyses of contaminant concentrations in water and sediments). Our results demonstrated that research on phytoremediation of industrial effluents should focus much more on the use of native macrophytes growing at short distances from industrial discharges (such as C. cuprina in this study), and that root/shoot ratio, aerial height and proportion of green leaves are good and cost-effective indicators of plant tolerance to metals and organic pollutant mixtures in laboratory studies.


Asunto(s)
Biodegradación Ambiental , Plantas/clasificación , Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Biomasa , Contaminación Ambiental/análisis , Residuos Industriales , Metales Pesados/química , Metales Pesados/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Contaminantes Químicos del Agua/química
7.
Plants (Basel) ; 12(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836089

RESUMEN

Since the early 20th century, Iris maackii (Iridaceae) has been considered a synonym of I. laevigata, a synonym of I. pseudacorus, or an accepted species. The current concept of I. maackii in the literature and databases is often applied to yellow-flowered plants with prominently veined rosette leaves, which are diagnostic features of I. pseudacorus growing in Northeast Asia. Therefore, the objective was to clarify the taxonomic identity of I. maackii. This study is based on a critical examination of the literature, on the observed morphological characters in the holotype of I. maackii, and on a morphological comparison of I. maackii with living plants of I. laevigata and I. pseudacorus. Additionally, a morphometric comparison of the seed characters was carried out to clarify the morphological distinction among I. maackii, I. laevigata, and I. pseudacorus. A careful study demonstrated that the rosette leaf texture and the morphology of the flowering stem, fruit, and seeds of I. maackii are identical to or within the variation range of I. laevigata. Thus, I. maackii is morphologically non-distinct from I. laevigata and should be recognized as a taxonomic synonym of the latter. An image of the holotype of I. maackii is provided along with detailed illustrations of I. laevigata and I. pseudacorus.

8.
J Hazard Mater ; 436: 129164, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739704

RESUMEN

The role of plants is largely unknown in constructed wetlands (CWs) exposed to phytotoxic nanomaterials. Present study investigated transformation of graphene oxide (GO) and performance of CWs with Iris pseudacorus as precursor. GO was trapped by CWs without dependence on plants. GO could move to lower substrate layer and present increases on defects/disorders with stronger effects in planted CW. Before adding GO, planted CW achieved better removal both of phosphorus and nitrogen. After adding GO, phosphorus removal in planted CW was 93.23-95.71% higher than 82.55-90.07% in unplanted CW. However, total nitrogen removal was not improved, showing 48.20-56.66% and 53.44-56.04% in planted and unplanted CWs. Plant improved urease, phosphatase, and arylsulfatase, but it decreased ß-glucosidase and had less effects on dehydrogenase and catalase. Pearson correlation matrix revealed that plant enhanced microbial interaction with high degree of positive correlation. Moreover, there were obvious shifts in microbial community at phylum and genus level, which presented closely positive action on substrate enzyme activities. The functional profile was less affected due to functional redundancy in microbial system, but time effects were obvious in CWs, especially in planted CW. These findings could provide the basis on understanding role of plants in CWs for treating nanoparticles wastewater.


Asunto(s)
Género Iris , Humedales , Grafito , Nitrógeno/análisis , Fósforo , Plantas , Eliminación de Residuos Líquidos , Aguas Residuales
9.
Front Plant Sci ; 12: 722525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950157

RESUMEN

Leaf senescence, the last stage of the developmental program of leaves, can be induced by both internal and external signals. Cold stress-induced leaf senescence is an efficient strategy to overcome winter temperatures. In this work, we studied leaf senescence in yellow flag (Iris pseudacorus L.) individuals growing in a natural wetland, not only considering its relationship with external and internal cues, but also the plant developmental program, and the biological significance of rhizomes, storage organs that remain viable through winter. Total chlorophyll contents and the maximum efficiency of PSII (Fv /Fm ratio) decreased in senescing leaves, which was associated with a sharp increase in abscisic acid (ABA) contents. Furthermore, total cytokinin and 2-isopentenyladenine contents decreased in December compared to November, as plants became more stressed due to a decline in air temperatures. ABA increases in senescing leaves increased in parallel to reductions in violaxanthin. Rhizomes also accumulated large amounts of ABA during winter, while roots did not, and neither roots nor rhizomes accumulated 9-cis-epoxycarotenoids, thus suggesting ABA, which might play a role in conferring cold tolerance to this subterranean organ, may result from phloem transport from senescing leaves. It is concluded that (i) leaf senescence is a highly regulated physiological process in yellow flag playing a key role in the modulation of the entire plant developmental program, and (ii) ABA plays a major role not only in the regulation of leaf senescence but also in the establishment of cold tolerance in rhizomes, two processes that appear to be intimately interconnected.

10.
J Hazard Mater ; 418: 126349, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118536

RESUMEN

The potential of Iris pseudacorus and the associated periphytic biofilm for biodegradation of two common pharmaceutical contaminants (PCs) in urban wastewater was assessed individually and in consortium. An enhanced removal for sulfamethoxazole (SMX) was achieved in consortium (59%) compared to individual sets of I. pseudacorus (50%) and periphytic biofilm (7%) at concentration of 5 mg L-1. Conversely, individual sets of periphytic biofilm (77%) outperformed removal of doxylamine succinate (DOX) compared to individual sets of I. pseudacorus (59%) and consortium (67%) at concentration of 1 mg L-1. Enhanced relative abundance of microflora containing microalgae (Sellaphora, Achnanthidium), rhizobacteria (Acidibacter, Azoarcus, Thioalkalivibrio), and fungi (Serendipita) in periphytic biofilm was observed after treatment. SMX treatment for five days elevated cytochrome P450 enzymes' expressions, including aniline hydroxylase (48%) and aminopyrine N-demethylase (54%) in the periphytic biofilm. Nevertheless, I. pseudacorus showed 175% elevation of aniline hydroxylase along with other biotransformation enzymes, such as peroxidase (629%), glutathione S-transferase (514%), and dichloroindophenol reductase (840%). A floating bed phytoreactor planted with I. pseudacorus and the periphytic biofilm consortium removed 67% SMX and 72% DOX in secondary wastewater effluent. Thus, the implementation of this strategy in constructed wetland-based treatment could be beneficial for managing effluents containing PCs.


Asunto(s)
Género Iris , Preparaciones Farmacéuticas , Biopelículas , Nitrógeno/análisis , Aguas Residuales
11.
Environ Pollut ; 291: 118170, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534823

RESUMEN

Aquatic plant biomass like Iris pseudacorus can be used as electron donor to improve denitrification performance in subsurface constructed wetlands. However, the phenomenon that the nitrogen removal rate declined in the terminal stage restricted the utilization of litters. In terms of this problem, this study investigated the performance of the used biomass through alkali treatment on nitrogen removal and analyzed the effect of alkali treatment on the component and structure of biomass and microbial community. The results showed that the alkali-treated biomass could further enhance the nitrogen removal by nearly 15% compared with used ones. The significant damage of cell walls and compact fibers containing cellulose and lignin through alkali treatment mainly resulted in the improvement of carbon release and nitrogen removal. With the addition of alkali-treated biomass, the richness index of microbes was higher compared with other biomass materials. Furthermore, the abundance of denitrification related genera increased and the abundance of genera for nitrification was maintained. Based on these finds, a mode of a more efficient Iris pseudacorus self-consumed subsurface flow constructed wetlands was designed. In this mode, the effluent total nitrogen could be stabilized below 5 mg L-1 for nine months and the weight of litters could be further cut down by 75%. These findings would contribute to efficient utilization of plant biomass for nitrogen removal enhancement and final residue reduction in the wetlands.


Asunto(s)
Género Iris , Humedales , Álcalis , Biomasa , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos
12.
Chemosphere ; 262: 127863, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32768758

RESUMEN

Aquatic plants litters from constructed wetlands might become pollutants without proper treatment. Due to its high carbon and low nitrogen contained, Iris pseudacorus litters have potential to be used as carbon source to enhance denitrification process in advanced treatments of secondary effluent from wastewater treatment plants. This study investigated the characteristics of carbon release form Iris pseudacorus litters and its performance on enhancement of nitrogen removal. The batch experiment showed that the organic carbon release process can be simulated by combining dissolution and hydrolysis process, and it was found that dissolved organic matters mainly consisted of 60% sugar and 35% humic acid-like compounds from the neutral detergent solution and hemicellulose of litters. The long-term operation of lab-scale constructed wetlands revealed a high nitrogen removal of 78.81-90.39% in treating the synthetic wastewater treatment plants effluent with the equivalent dosage of 25-150 g litters m-2 d-1. Furthermore, it is possible to establish an Iris pseudacorus self-consumed constructed wetland to reuse all of the litters produced during the operation. These findings can contribute to the understanding of the dynamics of carbon release from Iris pseudacorus litters and recycled utilization of plant biomass in the constructed wetlands.


Asunto(s)
Desnitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos , Humedales , Biomasa , Carbono , Género Iris , Reciclaje , Aguas Residuales
13.
Sci Total Environ ; 751: 141666, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33181991

RESUMEN

Floating treatment wetlands (FTWs) represent a recent system within the family of surface flow wetlands, able to directly treat various types of wastewaters in natural or artificial water bodies. In these conditions, traditional non-floating macrophytes, installed in self-buoyant mats, hydroponically expand their root systems in the wastewater, interacting with a rich microbial biodiversity and thereby removing different pollutants. This study aimed to evaluate the growth performances of 5 plant species installed in different FTWs after ten years of research conducted in North Italy: Phragmites australis, Iris pseudacorus, Typha latifolia, Carex spp. and Lythrum salicaria. During the entire experimental period, above-mat biomass production varied from 46.7 g m-2 (L. salicaria) to 1466.0 g m-2 (T. latifolia), whereas below-mat biomass production ranged between 205.7 g m-2 (L. salicaria) and 4331.1 g m-2 (P. australis). Both shoot height and root length assumed the highest values for T. latifolia (189.0 cm and 59.3 cm, respectively), the lowest for L. salicaria (42.3 cm and 35.1 cm, respectively). All plant species increased both above- and below-mat biomass productions over consecutive growing seasons through horizontal colonization of the floating mats, although not always significantly. Moreover, the growth of I. pseudacorus, P. australis and T. latifolia was significantly influenced by wastewater physico-chemical composition, exhibiting species-specific behavior. In general, all species showed a good aptitude to survive in hydroponic conditions both during the growing season and the winter, even though in a few cases the survival of I. pseudacorus and P. australis was strongly reduced by alien predators (Myocastor coypus) that badly damaged plant aerial tissues.


Asunto(s)
Typhaceae , Humedales , Biomasa , Italia , Poaceae
14.
AoB Plants ; 12(4): plaa031, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32850108

RESUMEN

This study examined the acclimation to temperature of two globally invasive species Iris pseudacorus and Lythrum salicaria, which share the same habitat type but differ in morphology. Iris pseudacorus has long vertical leaves, allowing light penetration through the canopy, while L. salicaria has stems with small horizontal leaves, creating significant self-shading. We aimed to build a physiological understanding of how these two species respond to different growth temperatures with regard to growth and gas exchange-related traits over the canopy. Growth and gas exchange-related traits in response to low (15 °C) and high (25 °C) growth temperature regimes were compared. Plants were grown in growth chambers, and light response curves were measured with infrared gas analysers after 23-33 days at three leaf positions on each plant, following the vertical light gradient through the canopy. After 37 days of growth, above-ground biomass, photosynthetic pigments and leaf N concentration were determined. The maximum photosynthesis rate was lower in lower leaf positions but did not differ significantly between temperatures. Iris pseudacorus photosynthesis decreased with decreasing leaf position, more so than L. salicaria. This was explained by decreasing N and chlorophyll concentrations towards the leaf base in I. pseudacorus, while pigment concentrations increased towards the lower canopy in L. salicaria. Biomass, shoot height and specific leaf area increased with temperature, more so in I. pseudacorus than in L. salicaria. Light response curves revealed that L. salicaria had a higher degree of shade acclimation than I. pseudacorus, probably due to self-shading in L. salicaria. High temperature decreased C assimilation at the bottom of the canopy in L. salicaria, while C assimilation in I. pseudacorus was less affected by temperature. As vegetative growth and flowering was stimulated by temperature, the invasive potential of these species is predicted to increase under global warming.

15.
Environ Sci Pollut Res Int ; 26(33): 34552-34561, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31650474

RESUMEN

Pharmaceutical contamination in diverse water resources has been recognized as an emerging concern in environment because of its wide distribution and adverse effects on aquatic microorganisms and human health. Plant remediation with augmentation of microorganisms is a cost-effective and environmentally friendly approach toward an efficient treatment of pollutants, which can be easily applied in situ. (Bio)degradation of sulfamethazine (SMZ) by Iris pseudacorus, microalgal consortium, and plant-microalgal consortium was investigated. I. pseudacorus and microalgae could remove 63.5, and 25.8% of 1 mg SMZ L-1, respectively, whereas, the plant-microalgal consortium achieved 74% removal. The identified intermediates extracted after plant remediation indicated (bio)degradation of SMZ was through ring cleavage, hydroxylation, and dehydroxylation. Pigment content (total chlorophyll and carotenoid) of I. pseudacorus was significantly influenced by SMZ stress. A phytoreactor (20 L) constructed with I. pseudacorus achieved 30.0% and 71.3% removal of 1 mg SMZ L-1 from tap water and nutrient medium. This study has provided a better understanding of the metabolic mechanisms of SMZ in plants and showed the potential development of a plant-microalgal consortium as an advanced technology for treatment of these emerging contaminants. Graphical abstract.


Asunto(s)
Biodegradación Ambiental , Microalgas/metabolismo , Sulfametazina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Clorofila/metabolismo , Humanos , Género Iris/crecimiento & desarrollo
16.
Environ Sci Pollut Res Int ; 26(23): 23696-23706, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203550

RESUMEN

Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.


Asunto(s)
Género Iris/metabolismo , Nitrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Desnitrificación , Ecosistema , Nitrógeno/análisis , Ciclo del Nitrógeno , Plantas/metabolismo , Estaciones del Año , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
17.
Aquat Toxicol ; 200: 197-205, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29775927

RESUMEN

The release of cyanobacterial toxins during algal bloom has adverse effects on aquatic plants and animals. This study aimed to understand the toxic effects and mechanism of microcystin-LR (MC-LR) on the seedling growth and physiological responses of Iris pseudacorus L. (calamus). After a one-month exposure experiment, the growth and development of the calamus leaves were significantly inhibited, and this inhibitory effect was verified to be concentration dependent. Furthermore, the cell membrane system was damaged, and the photosynthesis was also adversely affected by MC-LR. The relative conductivity of the leaves increased from 10.96% to 97.51%, and the total chlorophyll content decreased from 0.89 mg/g to 0.09 mg/g. Notably, the behavior of the roots in the presence of MC-LR was different from that of the leaves. The seedlings needed to absorb more nutrients to maintain the normal growth at low-toxin concentrations, but the high concentration of (over 250 µg/L) MC-LR exceeded the tolerance of plants and inhibited the growth of roots. In addition, MC-LR led to an excessive accumulation of H2O2, and the seedlings enhanced the activities of catalase, peroxidase, and superoxide dismutase to resist oxidative stress. The presence of MC-LR also affected the capacity of the plants to absorb nitrogen and phosphorus. The removal efficiency of NO3--N, the main source of nitrogen, was 63.53% in the presence of 100 µg/L MC-LR. As a result, the pH increased, and the growth of plants was indirectly inhibited. Therefore, the presence of MC-LR could affect the purification efficiency of calamus in eutrophic water. This study provides theoretical support for the selection of plants in the eutrophic water.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/fisiología , Género Iris/crecimiento & desarrollo , Género Iris/fisiología , Microcistinas/toxicidad , Animales , Antioxidantes/metabolismo , Organismos Acuáticos/efectos de los fármacos , Biomasa , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Género Iris/efectos de los fármacos , Toxinas Marinas , Nitrógeno/aislamiento & purificación , Nitrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Fósforo/aislamiento & purificación , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
18.
Environ Sci Pollut Res Int ; 25(19): 18793-18801, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29713975

RESUMEN

In recent years, the treatment of wastewater treatment plant (WWTP) effluent has gained increasing attention. However, researches on the relationships between nitrogen forms and nitrogen removal efficiency are very limited. Based on the fact that the nitrogen forms in the WWTP effluent may vary as the season changes, the nitrogen removal efficiencies of an integrated ecological floating bed (IEFB) was studied under different influent nitrogen forms. In addition, the effects of sediments in the system were also quantified during the experiment. Results showed that the total nitrogen (TN) removal rates of the IEFB were 25.61 ± 5.72% and 60.03 ± 7.00%, respectively, when the main influent nitrogen forms are nitrate and ammonia. The sediments in the system also played vital roles in the removal processes: when the sediments were covered with a polyethylene membrane, the total nitrogen (TN) removal rate of the system dropped from 27.86 ± 5.53% to 14.78 ± 4.97%, and the total phosphorus (TP), from 58.77 ± 6.20% to 33.51 ± 25.52%.


Asunto(s)
Nitrógeno/química , Instalaciones de Eliminación de Residuos , Aguas Residuales , Purificación del Agua , Amoníaco/química , Fósforo/química , Eliminación de Residuos Líquidos/métodos
19.
Sci Total Environ ; 624: 1336-1347, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929246

RESUMEN

Rapidly developing industry raises concerns about the environmental risks of silver nanoparticles (AgNPs), but the effects of AgNPs on the performance and microbial community in the constructed wetlands remain unclear. In this study, long-term exposure of AgNPs in two VFCWs was conducted to determine the effects of AgNPs on the pollutant removal and microbial community structure. Before exposing AgNPs, the water quality of effluent was better in planted wetland (CW2), compared with unplanted wetland (CW1). After continuous exposure of 100µg/L AgNPs, the COD (chemical oxygen demand) removal of two CWs had no difference. However, addition of AgNPs reduced the nitrogen and phosphorus removal in two CWs, with decreasing average removal efficiencies of ammonia nitrogen from 46.31% to 32.09% and 59.66% to 51.06%, total nitrogen from 57.76% to 43.78% and 67.35 to 60.58%, total phosphorus from 71.29% to 59.31% and 67.35% to 60.58%, respectively. The vegetable wetlands showed higher resistances to AgNPs loading than unplanted wetlands. In addition, AgNPs accumulated in the wetland substrate, especially in the soil layer with the silver concentration of approximately 4.32µg/g. The small portion of silver was found in plant tissues, and plants played a minor role to remove the AgNPs from wastewater. Moreover, the constructed wetlands could effectively remove the AgNPs from the synthetic wastewater. The illumine high-throughput sequencing results demonstrated the variations of the bacterial community structure at the exposure of AgNPs. The results showed that the dominant phyla were Proteobacteria, Acidobacteria and Bacteroidetes. Compared with unplanted wetlands, the contents of several nitrifying bacteria such as Candidatus Nitrososphaera (AOA) and Nitrospira (NOB) at genus level increased, leading to the higher nitrogen removal in the planted wetlands.


Asunto(s)
Iridaceae/fisiología , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Microbiología del Suelo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Humedales , Nitrógeno/análisis , Fósforo/análisis , Aguas Residuales/química
20.
Huan Jing Ke Xue ; 37(9): 3447-3452, 2016 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-29964779

RESUMEN

In order to provide references for the application of emergent plants in the remediation and restoration of aquatic ecosystems, a hydroponic experiment was conducted for Iris pseudacorus L. with different nitrate mass concentrations (i. e., 10.68, 23.88, 42.22, 63.33, 82.92, 97.13 mg·L-1). The effects of nitrate mass concentration in water on the growth and nitrogen absorption capacity of I. pseudacorus were evaluated by the aboveground biomass, belowground biomass, root-shoot ratio, chlorophyll content, nitrogen uptake, and nitrate removal efficiency of the plants. The following results were obtained from the experiment. 1 The effects of nitrate mass concentration on the aboveground (stems and leaves) growth of the I. pseudacorus were greater than that on the belowground (roots) growth. Compared with the values before the experiment, the root-shoot ratio of the I. pseudacorus increased in the treatment with 10.68 mg·L-1 of nitrate mass concentration; while the root-shoot ratio decreased in the treatments with 42.22-97.13 mg·L-1 of nitrate mass concentration. 2 The I. pseudacorus grew better with nitrate mass concentration ranging from 23.88 mg·L-1 to 63.33 mg·L-1; and the chlorophyll biosynthesis of the plants was inhibited in the treatments with 10.68, 82.92, and 97.13 mg·L-1 of nitrate mass concentration. 3 The total nitrogen accumulation of the I. pseudacorus was in range of 10.56-75.43 mg in the experiment, which increased with the increase of nitrate mass concentration; and the accumulation of nitrogen in the belowground parts was 7.2, 2.3, 2.5, 2.1, 1.6, and 1.5 times of that in the aboveground parts, respectively. 4 The nitrogen utilization efficiency of the aboveground parts was higher than that of the belowground parts. 5 The removal rates of nitrate by I. pseudacorus were 94.9%-99.3%, which increased with increasing nitrate mass concentration. The nitrate mass concentration in water decreased with time in exponential function. In conclusion, I. pseudacorus has promising performance in the removal of nitrate in water, but its growth, nitrogen adsorption, and nitrate removal rate were significantly affected by the nitrate mass concentration. Moreover, the response of growth and nitrogen adsorption in aboveground of I. pseudacorus to nitrate mass concentration was more sensitive than that in belowground.


Asunto(s)
Género Iris/crecimiento & desarrollo , Género Iris/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Adsorción , Biodegradación Ambiental , Biomasa , Raíces de Plantas , Brotes de la Planta , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda