Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Appl Environ Microbiol ; : e0059924, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133000

RESUMEN

Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 and mtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCE: Winogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.

2.
Appl Environ Microbiol ; 89(12): e0057023, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38009924

RESUMEN

IMPORTANCE: In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.


Asunto(s)
Gallionellaceae , Oryza , Contaminantes del Suelo , Hierro/metabolismo , Gallionellaceae/metabolismo , Oryza/microbiología , Ecosistema , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Cadmio/metabolismo
3.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688790

RESUMEN

Microbially driven Fe(II) oxidation is vital for Fe-cycling processes. In the present study, a novel strain of nitrate-dependent Fe-oxidizing bacteria (FOB) was isolated from the riparian zone sediment of the Hanjiang River, China. It was identified as Comamonas terrigena strain HJ-2. The strain HJ-2 oxidized 2.80 mmol l-1 Fe(II) within 144 h to form Fe(III)/Fe(II) complex on the cell surface using 1.63 mmol l-1 nitrate as an electron acceptor. The formed nitrite from nitrate reduction chemically oxidized Fe(II). Surprisingly, this strain also reduced nitrilotriacetic iron to form 0.5 mmol l-1 Fe(II) in 120 h in anaerobic conditions primarily mediated by the NADH flavin oxidoreductase. Besides, the strain completely reduced 0.18 mmol l-1 nitrobenzene to aniline in 24 days and 15.6 µmol l-1 arsenate to arsenite in 7 days due to the existence of nitro and arsenate reductases. However, the Fe(II) inhibited the reduction of nitrate, nitrobenzene, and arsenate, possibly due to the impeding of transport of the solutes through the membrane or the synthesis of the related enzymes. These results provide new knowledge about the Fe(II)-cycling and the fate of some pollutants in the riparian zone. It also informed that some bacteria have universal functions on elements and contaminants transformation.


Asunto(s)
Comamonas , Nitratos , Nitratos/metabolismo , Arseniatos/metabolismo , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Comamonas/metabolismo , Bacterias/metabolismo , Oxidación-Reducción
4.
J Environ Sci (China) ; 130: 187-196, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032035

RESUMEN

Extracellular polymeric substances (EPS) are an important medium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron (oxyhydr) oxides production which reduced arsenic (As) availability. The main component of EPS secreted by iron-oxidizing bacteria (Ochrobactrum EEELCW01) was composed of polysaccharides (150.76-165.33 mg/g DW) followed by considerably smaller amounts of proteins (12.98-16.12 mg/g DW). Low concentrations of As (100 or 500 µmol/L) promoted the amount of EPS secretion. FTIR results showed that EPS was composed of polysaccharides, proteins, and a miniscule amount of nucleic acids. The functional groups including -COOH, -OH, -NH, -C=O, and -C-O played an important role in the adsorption of As. XPS results showed that As was bound to EPS in the form of As3+. With increasing As concentration, the proportion of As3+ adsorbed on EPS increased. Ferrihydrite with a weak crystalline state was only produced in the system at 6 hr during the mineralization process of Ochrobactrum sp. At day 8, the minerals were composed of goethite, galena, and siderite. With the increasing mineralization time, the main mineral phases were transformed from weakly crystalline hydrous iron ore into higher crystallinity siderite (FeCO3) or goethite (α-FeOOH), and the specific surface area and active sites of minerals were reduced. It can be seen from the distribution of As elements that As is preferentially adsorbed on the edges of iron minerals. This study is potential to understand the biomineralization mechanism of iron-oxidizing bacteria and As remediation in the environment.


Asunto(s)
Arsénico , Arsénico/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Compuestos Férricos/química , Minerales/química , Hierro , Polisacáridos , Bacterias/metabolismo , Oxidación-Reducción
5.
Bioprocess Biosyst Eng ; 45(1): 117-130, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34617132

RESUMEN

Sponge iron (SFe) is a zero-valent iron (Fe0) composite with a high-purity and porous structure. In this study, SFe was coupled with microorganisms that were gradually domesticated to form a Fe0/iron-oxidizing bacteria system (Fe0-FeOB system). The enhancement effect of the Fe0-FeOB system on refractory organics was verified, the mechanism of its strengthening action was investigated, and the relationship and influencing factors between the Fe0 and microorganisms were revealed. The average removal rates of the Fe0-FeOB system were 8.98%, 5.69%, and 40.67% higher than those of the SBR system for AF, AN, and NB wastewater treatment, respectively. With the addition of SFe, the microbial community structure was gradually enhanced with a large number of FeOB were detected. Moreover, the bacteria with strong iron corrosion and Fe(II) oxidation abilities plays a critical role in improving the Fenton-like effect. Interestingly, the variation trend of ⋅OH was fairly consistent with that of Fe(II). Thus, the main drivers of the Fenton-like effect are biological corrosion and metabolism. Consequently, microbial degradation and Fenton-like effect contributed to the degradation performance of the Fe0-FeOB system. Among them, the microbial degradation accounted for 96.09%, of which the biogenic Fenton effect accounted for 8.9%, and the microbial metabolic activity accounted for 87.19%. However, the augmentation of the Fe0-FeOB system was strongly dependent on SFe for the strengthening effect of microorganisms disappeared after leaving the SFe 35 days.


Asunto(s)
Hierro/química , Compuestos Orgánicos/aislamiento & purificación , Microbiota , Purificación del Agua/métodos
6.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076431

RESUMEN

Iron-oxidizing bacteria (FeOB) are some of the initial colonizing organisms during microbially influenced corrosion of steel infrastructure. To better understand the abiotic conditions under which FeOB colonize steel, an environmental study was conducted to determine the effects of salinity, temperature, dissolved oxygen levels, and steel type on FeOB colonization. Stainless steel (304 and 316 [i.e., 304SS and 316SS]) was used to determine the potential susceptibility of these specialized corrosion-resistant steels. Steel coupon deployments along salinity gradients in two river systems revealed attachment by FeOB at all sites, with greater abundance of FeOB at higher salinities and on 316SS, compared to 304SS. This may be due to the presence of molybdenum in 316SS, potentially providing a selective advantage for FeOB colonization. A novel Zetaproteobacteria species, Mariprofundus erugo, was isolated from these stainless steel samples. Genes for molybdenum utilization and uptake and reactive oxygen species protection were found within its genome, supporting the evidence from our FeOB abundance data; they may represent adaptations of FeOB for colonization of surfaces of anthropogenic iron sources such as stainless steel. These results reveal environmental conditions under which FeOB colonize steel surfaces most abundantly, and they provide the framework needed to develop biocorrosion prevention strategies for stainless steel infrastructure in coastal estuarine areas.IMPORTANCE Colonization of FeOB on corrosion-resistant stainless steel types (304SS and 316SS) has been quantified from environmental deployments along salinity gradients in estuarine environments. Greater FeOB abundance at higher salinities and on the more-corrosion-resistant 316SS suggests that there may be a higher risk of biocorrosion at higher salinities and there may be a selective advantage from certain stainless steel alloy metals, such as molybdenum, for FeOB colonization. A novel species of FeOB described here was isolated from our stainless steel coupon deployments, and its genome sequence supports our environmental data, as genes involved in the potential selectiveness toward surface colonization of stainless steel might lead to higher rates of biocorrosion of manmade aquatic infrastructure. These combined results provide environmental constraints for FeOB colonization on anthropogenic iron sources and build on previous frameworks for biocorrosion prevention strategies.


Asunto(s)
Hierro/metabolismo , Proteobacteria/genética , Proteobacteria/metabolismo , Salinidad , Acero Inoxidable/química , Corrosión , Oxidación-Reducción
7.
World J Microbiol Biotechnol ; 35(8): 117, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332532

RESUMEN

Iron- and sulfur-oxidizing bacteria inhabiting rice rhizoplane play a significant role on arsenic biogeochemistry in flooded rice paddies, influencing arsenic translocation to rice grains. In the present study, the selective pressure of arsenic species on these microbial populations was evaluated. Rice roots from continuously flooded plants were incubated in iron sulfide (FeS) gradient tubes and exposed to either arsenate or arsenite. The biomass developed in the visible iron-oxidation band of the enrichments was analyzed by Scanning Electron Microscopy and Energy-Dispersive Spectroscopy (SEM-EDS) and the bacterial communities were characterized by 16S rRNA gene sequencing. Different Proteobacteria communities were selected depending on exposure to arsenate and arsenite. Arsenate addition favored the versatile iron-oxidizers Dechloromonas and Azospira, associated to putative iron (hydr)oxide crystals. Arsenite exposure decreased the diversity in the enrichments, with the development of the sulfur-oxidizer Thiobacillus thioparus, likely growing on sulfide released by FeS. Whereas sulfur-oxidizers were observed in all treatments, iron-oxidizers disappeared when exposed to arsenite. These results reveal a strong impact of different inorganic arsenics on rhizospheric iron-oxidizers as well as a crucial role of sulfur-oxidizing bacteria in establishing rice rhizosphere communities under arsenic pressure.


Asunto(s)
Arsénico/metabolismo , ADN Bacteriano/aislamiento & purificación , Oryza/efectos de los fármacos , Oryza/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Arseniatos/metabolismo , Arsenitos/metabolismo , ADN Bacteriano/genética , Hierro/metabolismo , Oxidación-Reducción , Proteobacteria/efectos de los fármacos , Proteobacteria/aislamiento & purificación , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Azufre/metabolismo
8.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453262

RESUMEN

Leptothrix ochracea is known for producing large volumes of iron oxyhydroxide sheaths that alter wetland biogeochemistry. For over a century, these delicate structures have fascinated microbiologists and geoscientists. Because L. ochracea still resists long-term in vitro culture, the debate regarding its metabolic classification dates back to 1885. We developed a novel culturing technique for L. ochracea using in situ natural waters and coupled this with single-cell genomics and nanoscale secondary-ion mass spectrophotometry (nanoSIMS) to probe L. ochracea's physiology. In microslide cultures L. ochracea doubled every 5.7 h and had an absolute growth requirement for ferrous iron, the genomic capacity for iron oxidation, and a branched electron transport chain with cytochromes putatively involved in lithotrophic iron oxidation. Additionally, its genome encoded several electron transport chain proteins, including a molybdopterin alternative complex III (ACIII), a cytochrome bd oxidase reductase, and several terminal oxidase genes. L. ochracea contained two key autotrophic proteins in the Calvin-Benson-Bassham cycle, a form II ribulose bisphosphate carboxylase, and a phosphoribulose kinase. L. ochracea also assimilated bicarbonate, although calculations suggest that bicarbonate assimilation is a small fraction of its total carbon assimilation. Finally, L. ochracea's fundamental physiology is a hybrid of those of the chemolithotrophic Gallionella-type iron-oxidizing bacteria and the sheathed, heterotrophic filamentous metal-oxidizing bacteria of the Leptothrix-Sphaerotilus genera. This allows L. ochracea to inhabit a unique niche within the neutrophilic iron seeps.IMPORTANCELeptothrix ochracea was one of three groups of organisms that Sergei Winogradsky used in the 1880s to develop his hypothesis on chemolithotrophy. L. ochracea continues to resist cultivation and appears to have an absolute requirement for organic-rich waters, suggesting that its true physiology remains unknown. Further, L. ochracea is an ecological engineer; a few L. ochracea cells can generate prodigious volumes of iron oxyhydroxides, changing the ecosystem's geochemistry and ecology. Therefore, to determine L. ochracea's basic physiology, we employed new single-cell techniques to demonstrate that L. ochracea oxidizes iron to generate energy and, despite having predicted genes for autotrophic growth, assimilates a fraction of the total CO2 that autotrophs do. Although not a true chemolithoautotroph, L. ochracea's physiological strategy allows it to be flexible and to extensively colonize iron-rich wetlands.


Asunto(s)
Técnicas Bacteriológicas/métodos , Hierro/metabolismo , Leptothrix/fisiología , Compuestos Férricos/metabolismo , Oxidación-Reducción
9.
Int J Syst Evol Microbiol ; 68(8): 2587-2592, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29944111

RESUMEN

An iron-oxidizing bacterium, designated strain An22T, which was isolated from a paddy field soil in Anjo, Japan, was described taxonomically. Strain An22T was motile by a single polar flagellum, curved-rod, Gram-negative bacterium that was able to grow at 12-37 °C (optimally at 25-30 °C) and at pH 5.2-6.8 (pH 5.9-6.1). The strain grew microaerobically and autotrophically by oxidizing ferrous iron, but did not form stalks, a unique structure of iron oxides. The major cellular fatty acids were C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. The major respiratory quinones were UQ-10 and UQ-8. The strain possessed ribulose-1,5-bisphosphate carboxylase/oxygenase indicating an autotrophic nature via the Calvin-Benson-Bassham cycle. The total DNA G+C content was 61.4 mol%. 16S rRNA gene sequence analysis revealed that strain An22T was affiliated with the class Betaproteobacteria and clustered with iron-oxidizing bacteria, Gallionella ferrugineaJohan (94.8 % similarity) and Ferriphaselus amnicola OYT1T (94.4 %) in the family Gallionellaceae. Based on the low 16S rRNA gene sequence similarity to the phylogenetically closest genera and the combination of unique morphological, physiological and biochemical characteristics, strain An22T represents a novel genus and species within the family Gallionellaceae, for which the name Ferrigenium kumadai gen. nov., sp. nov. is proposed. The type strain is An22T (=JCM 30584T=NBRC 112974T=ATCC TSD-51T).


Asunto(s)
Gallionellaceae/clasificación , Oryza , Filogenia , Microbiología del Suelo , Procesos Autotróficos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gallionellaceae/genética , Gallionellaceae/aislamiento & purificación , Hierro/metabolismo , Japón , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
10.
Extremophiles ; 22(6): 851-863, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30027412

RESUMEN

Indigenous iron-oxidizing bacteria were isolated on modified selective 9KFe2+ medium from Baiyin copper mine stope, China. Three distinct acidophilic bacteria were isolated and identified by analyzing the sequences of 16S rRNA gene. Based on published sequences of 16S rRNA gene in the GenBank, a phylogenetic tree was constructed. The sequence of isolate WG101 showed 99% homology with Acidithiobacillus ferrooxidans strain AS2. Isolate WG102 exhibited 98% similarity with Leptospirillum ferriphilum strain YSK. Similarly, isolate WG103 showed 98% similarity with Leptospirillum ferrooxidans strain L15. Furthermore, the biotechnological potential of these isolates in consortia form was evaluated to recover copper and zinc from their ore. Under optimized conditions, 77.68 ± 3.55% of copper and 70.58 ± 3.77% of zinc were dissolved. During the bioleaching process, analytical study of pH and oxidation-reduction potential fluctuations were monitored that reflected efficient activity of the bacterial consortia. The FTIR analysis confirmed the variation in bands after treatment with consortia. The impact of consortia on iron speciation within bioleached ore was analyzed using Mössbauer spectroscopy and clear changes in iron speciation was reported. The use of indigenous bacterial consortia is more efficient compared to pure inoculum. This study provided the basic essential conditions for further upscaling bioleaching application for metal extraction.


Asunto(s)
Cobre/metabolismo , Hierro/metabolismo , Microbiota , Minerales/química , Zinc/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/aislamiento & purificación , Biotransformación , Cobre/análisis , Microbiología Industrial/métodos , Minerales/metabolismo , Oxidación-Reducción , Zinc/análisis
11.
Appl Microbiol Biotechnol ; 102(22): 9803-9813, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30155752

RESUMEN

Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment.


Asunto(s)
Arsénico/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Ácidos/química , Ácidos/metabolismo , Arsénico/análisis , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Biodiversidad , Hierro/química , Cinética , Minería , Oxidación-Reducción , Factores de Tiempo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
12.
Biofouling ; 34(9): 989-1000, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30642207

RESUMEN

Lithotrophic iron-oxidizing bacteria depend on reduced iron, Fe(II), as their primary energy source, making them natural candidates for growing in association with steel infrastructure and potentially contributing to microbially influenced corrosion (MIC). This review summarizes recent work on the role of iron-oxidizing bacteria (FeOB) in MIC. By virtue of producing complex 3-dimensional biofilms that result from the accumulation of iron-oxides, FeOB may aid in the colonization of steel surfaces by other microbes involved in MIC. Evidence points to a successional pattern occurring whereby FeOB are early colonizers of mild steel (MS), followed by sulfate-reducing bacteria and other microbes, although studies of aged corrosion products indicate that FeOB do establish a long-term presence. There is evidence that only specific clades of FeOB, with unique adaptations for growing on steel surfaces are part of the MIC community. These are discussed in the context of the larger MIC microbiome.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Corrosión , Proteobacteria/crecimiento & desarrollo , Acero/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Agua Dulce/microbiología , Oxidación-Reducción , Proteobacteria/metabolismo , Propiedades de Superficie
13.
World J Microbiol Biotechnol ; 34(8): 110, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29974320

RESUMEN

Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Hierro/metabolismo , Filogenia , Agua de Mar/microbiología , Biodiversidad , Corrosión , Concentración de Iones de Hidrógeno , Biología Marina , Oxidación-Reducción , Oxígeno/metabolismo , Filogeografía , Proteobacteria/clasificación , Proteobacteria/citología , Proteobacteria/metabolismo
14.
Arch Microbiol ; 199(2): 335-346, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27766355

RESUMEN

A novel iron-oxidizing chemolithoautotrophic bacterium, strain ET2T, was isolated from a deep-sea sediment in a hydrothermal field of the Bayonnaise knoll of the Izu-Ogasawara arc. Cells were bean-shaped, curved short rods. Growth was observed at a temperature range of 15-30 °C (optimum 25 °C, doubling time 24 h) and a pH range of 5.8-7.0 (optimum pH 6.4) in the presence of NaCl at a range of 1.0-4.0 % (optimum 2.75 %). The isolate was a microaerophilic, strict chemolithoautotroph capable of growing using ferrous iron and molecular oxygen (O2) as the sole electron donor and acceptor, respectively; carbon dioxide as the sole carbon source; and either ammonium or nitrate as the sole nitrogen source. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the new isolate was related to the only previously isolated Mariprofundus species, M. ferrooxydans. Although relatively high 16S rRNA gene similarity (95 %) was found between the new isolate and M. ferrooxydans, the isolate was distinct in terms of cellular fatty acid composition, genomic DNA G+C content and cell morphology. Furthermore, genomic comparison between ET2T and M. ferrooxydans PV-1 indicated that the genomic dissimilarity of these strains met the standard for species-level differentiation. On the basis of its physiological and molecular characteristics, strain ET2T (= KCTC 15556T = JCM 30585 T) represents a novel species of Mariprofundus, for which the name Mariprofundus micogutta is proposed. We also propose the subordinate taxa Mariprofundales ord. nov. and Zetaproteobacteria classis nov. in the phylum Proteobacteria.


Asunto(s)
Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación , Agua de Mar/microbiología , Crecimiento Quimioautotrófico , Ácidos Grasos/análisis , Respiraderos Hidrotermales , Hierro/metabolismo , Filogenia , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética
15.
Appl Microbiol Biotechnol ; 101(17): 6725-6738, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28660288

RESUMEN

In recent years, the role of microorganisms inhabiting rice rhizosphere in promoting arsenic contamination has emerged. However, little is known concerning the species and metabolic properties involved in this phenomenon. In this study, the influence of water management on the rhizosphere microbiota in relation to arsenic dissolution in soil solution was tested. Rice plants were cultivated in macrocosms under different water regimes: continuous flooding, continuous flooding with a 2-week period drainage before flowering, and dry soil watered every 10 days. The active bacterial communities in rhizosphere soil and in rhizoplane were characterized by 16S rRNA pyrosequencing. An in-depth analysis of microbial taxa with direct or indirect effects on arsenic speciation was performed and related contribution was evaluated. Continuous flooding promoted high diversity in the rhizosphere, with the plant strongly determining species richness and evenness. On the contrary, under watering the communities were uniform, with little differences between rhizosphere soil and rhizoplane. Arsenic-releasing and arsenite-methylating bacteria were selected by continuous flooding, where they represented 8% of the total. On the contrary, bacteria decreasing arsenic solubility were more abundant under watering, with relative abundance of 10%. These values reflected arsenic concentrations in soil solution: 135 µg L-1 and negligible in continuous flooding and under watering, respectively. When short-term drainage was applied before flowering, intermediate conditions were achieved. This evidence strongly indicates an active role of the rhizosphere microbiota in driving arsenic biogeochemistry in rice paddies, influenced by water management, explaining amounts and speciation of arsenic often found in rice grains.


Asunto(s)
Arsénico/metabolismo , Hierro/metabolismo , Oryza/metabolismo , Microbiología del Suelo , Azufre/metabolismo , Agua , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Microbiota/genética , Microbiota/fisiología , Oxidación-Reducción , Raíces de Plantas/microbiología , ARN Ribosómico 16S/metabolismo , Rizosfera , Suelo/química , Contaminantes del Suelo/metabolismo
16.
Biotechnol Bioeng ; 113(4): 790-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26370386

RESUMEN

The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has previously been genetically modified to produce isobutyric acid (IBA) from carbon dioxide while obtaining energy from the oxidation of ferrous iron. Here, a combinatorial approach was used to explore the influence of medium composition in both batch and chemostat cultures in order to improve IBA yields (g IBA/mol Fe(2+)) and productivities (g IBA/L/d). Medium pH, ferrous concentration (Fe(2+)), and inclusion of iron chelators all had positive impact on the IBA yield. In batch experiments, gluconate was found to be a superior iron chelator because its use resulted in smaller excursions in pH. In batch cultures, IBA yields decreased linearly with increases in the final effective Fe(3+) concentrations. Chemostat cultures followed similar trends as observed in batch cultures. Specific cellular productivities were found to be a function of the steady state ORP (Oxidation-reduction potential) of the growth medium, which is primarily determined by the Fe(3+) to Fe(2+) ratio. By operating at low ORP, chemostat cultures were able to achieve volumetric productivities as high as 3.8 ± 0.2 mg IBA/L/d which is a 14-fold increase over the previously reported value.


Asunto(s)
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Medios de Cultivo/química , Isobutiratos/metabolismo , Organismos Modificados Genéticamente , Dióxido de Carbono/metabolismo , Quelantes/metabolismo , Compuestos Ferrosos/metabolismo , Gluconatos/metabolismo , Concentración de Iones de Hidrógeno , Ingeniería Metabólica , Oxidación-Reducción
17.
J Environ Manage ; 150: 235-242, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25514538

RESUMEN

The effect of citric acid (CA), rhizosphere acidophilic heterotrophs and/or Fe(II) oxidizing bacteria (Fe(II)OB) on plaque formation and metal accumulation in Phragmites australis L. (common reed) from acid mine drainage (AMD) solution were investigated. Reeds were grown in different hydroponic solutions that contained AMD, CA and/or rhizosphere bacteria for three months. Triplicate experiments were conducted for each experimental condition. Fe(II)OB enhanced the formation of Fe plaque which decreased Fe and Mn uptake in reeds, while it had no significant influence on Al accumulation. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque and increased Fe and Mn accumulation in reeds. Acidophilic heterotrophs consumed CA and made the environment more suitable for the growth of Fe(II)OB. Reeds are a good candidate for phytoextraction while CA is a useful chelator to enhance metal uptake in plants. More research may be needed to investigate the influence of CA on microbial community. Further investigations are required to study the effect of CA on phytoremediation of AMD contaminated fields.


Asunto(s)
Bacterias/metabolismo , Ácido Cítrico/farmacología , Metales Pesados/metabolismo , Minería , Poaceae/metabolismo , Fenómenos Fisiológicos Bacterianos , Biodegradación Ambiental , Humanos , Raíces de Plantas/microbiología , Poaceae/efectos de los fármacos , Rizosfera
18.
Biotechnol Bioeng ; 111(10): 1940-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24771134

RESUMEN

Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production.


Asunto(s)
Acidithiobacillus/crecimiento & desarrollo , Quelantes/metabolismo , Ácido Cítrico/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Acidithiobacillus/metabolismo , Técnicas de Cultivo de Célula , Precipitación Química , Medios de Cultivo/metabolismo , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción
19.
Can J Microbiol ; 60(5): 277-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24749954

RESUMEN

We investigated the seasonal and spatial variation in activity and density of the metabolically active in situ microbial community (AIMC) at a landfill leachate-impacted groundwater - surface water interface (GSI). A series of AIMC traps were designed and implemented for AIMC sampling and microbial activity and density examinations. Measurements were made not only at the level of bacterial domain but also at the levels of alphaproteobacterial Rhizobiales order and gammaproteobacterial Pseudomonas genus, both of which included a large number of iron-oxidizing bacteria as revealed from previous analysis. Consistently higher microbial activities with less variation in depth were measured in the AIMC traps than in the ambient sediments. Flood disturbance appeared to control AIMC activity distributions at the gradually elevated GSI. The highest AIMC activities were generally obtained from locations closest to the free surface water boundary except during the dry season when microbial activities were similar across the entire GSI. A clone library of AIMC 16S rRNA genes was constructed, and it confirmed the predominant role of the targeted alphaproteobacterial group in AIMC activity and composition. This taxon constituted 2%-14% of all bacteria with similar activity distribution profiles. The Pseudomonas group occupied only 0.1‰-0.5‰ of the total bacterial density, but its activity was 27 times higher than the bacterial average. Of the 16S rRNA sequences in the AIMC clone library, 7.5% were phylogenetically related to putative IOB, supporting the occurrence and persistence of active microbial iron oxidation across the studied iron-rich GSI ecosystem.


Asunto(s)
Bacterias/aislamiento & purificación , Agua Subterránea/microbiología , Microbiología del Agua , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/metabolismo , Bacterias/clasificación , Bacterias/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/metabolismo , Hierro/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Contaminantes Químicos del Agua
20.
Ecotoxicol Environ Saf ; 104: 72-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24632124

RESUMEN

Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ácido Cítrico/farmacología , Metales Pesados/metabolismo , Minería , Poaceae , Rizosfera , Bacterias , Biodegradación Ambiental , Metales Pesados/análisis , Raíces de Plantas/microbiología , Poaceae/química , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Poaceae/microbiología , Soluciones/farmacología , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda