Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 22(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632293

RESUMEN

It is critical to deploy wireless data transmission technologies remotely, in real-time, to monitor the health state of diesel engines dynamically. The usual approach to data compression is to collect data first, then compress it; however, we cannot ensure the correctness and efficiency of the data. Based on sparse Bayesian optimization block learning, this research provides a method for compression reconstruction and fault diagnostics of diesel engine vibration data. This method's essential contribution is combining compressive sensing technology with fault diagnosis. To achieve a better diagnosis effect, we can effectively improve the wireless transmission efficiency of the vibration signal. First, the dictionary is dynamically updated by learning the dictionary using singular value decomposition to produce the ideal sparse form. Second, a block sparse Bayesian learning boundary optimization approach is utilized to recover structured non-sparse signals rapidly. A detailed assessment index of the data compression effect is created. Finally, the experimental findings reveal that the approach provided in this study outperforms standard compression methods in terms of compression efficiency and accuracy and its ability to produce the desired fault diagnostic effect, proving the usefulness of the proposed method.


Asunto(s)
Compresión de Datos , Algoritmos , Teorema de Bayes , Compresión de Datos/métodos , Fenómenos Físicos , Vibración
2.
Sensors (Basel) ; 19(11)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181721

RESUMEN

In two-color multiview (2CMV) advanced geospatial information (AGI) products, temporal changes in synthetic aperture radar (SAR) images acquired at different times are detected, colorized, and overlaid on an initial image such that new features are represented in cyan, and features that have disappeared are represented in red. Accurate detection of temporal changes in 2CMV AGI products can be challenging because of 'speckle noise' susceptibility and false positives that result from small orientation differences between objects imaged at different times. Accordingly, 2CMV products are often dominated by colored pixels when changes are detected via simple pixel-wise cross-correlation. The state-of-the-art in SAR image processing demonstrates that generating efficient 2CMV products, while accounting for the aforementioned problem cases, has not been well addressed. We propose a methodology to address the aforementioned two problem cases. Before detecting temporal changes, speckle and smoothing filters mitigate the effects of speckle noise. To detect temporal changes, we propose using unsupervised feature learning algorithms in conjunction with optical flow algorithms that track the motion of objects across time in small regions of interest. The proposed framework for distinguishing between actual motion and misregistration can lead to more accurate and meaningful change detection and improve object extraction from an SAR AGI product.

3.
Neuroimage ; 125: 1032-1045, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26524138

RESUMEN

Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Vías Nerviosas/fisiología , Anciano , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Teóricos , Descanso
4.
ISA Trans ; 142: 454-464, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37567807

RESUMEN

Due to nonstationary operating conditions of wind turbines and surrounding harsh working environments, the impulse features induced by bearing faults are always overwhelmed by heavy noise, which brings challenges to accurately detect rolling bearing faults. Sparse representation exhibits excellent performance in nonstationary signal analysis, but it is closely bound up with the degree of similarity between the atoms in a dictionary and signals. Therefore, this paper investigates an enhanced K-SVD denoising method based on adaptive soft-threshold shrinkage to achieve high-precision extraction of impulse signals, and applies it to fault detection of generator bearing of wind turbines. An adaptive sparse coding shrinkage soft-threshold denoising is first proposed to remove noise and harmonic interference in the residual term of dictionary updating, so that the updated atoms show obvious impact characteristics. Furthermore, a soft-threshold shrinkage function with adaptive threshold is designed to further suppress clutter in atoms of the learned dictionary, so as to obtain an optimized dictionary for recovering impulse signals. Two actual engineering cases are selected for analysis, and the envelope spectrum correlation kurtosis corresponding to the results obtained by the proposed method is significantly higher than that of other comparison methods, thus verifying its superiority in detecting rolling bearing faults.

5.
Math Biosci Eng ; 19(11): 11533-11543, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124602

RESUMEN

Ultrasound Elastography is a late-model Ultrasound imaging technique mainly used to diagnose tumors and diffusion diseases that can't be detected by traditional Ultrasound imaging. However, artifact noise, speckle noise, low contrast and low signal-to-noise ratio in images make disease diagnosing a challenging task. Medical images denoising, as the first step in the follow-up processing of medical images, has been concerned by many people. With the widespread use of deep learning technique in the research field, dictionary learning method are once again receiving attention. Dictionary learning, as a traditional machine learning method, requires less sample size, has high training efficiency, and can describe images well. In this work, we present a novel strategy based on K-clustering with singular value decomposition (K-SVD) and principal component analysis (PCA) to reduce noise in Ultrasound Elastography images. At this stage of dictionary training, we implement a PCA method to transform the way dictionary atoms are updated in K-SVD. Finally, we reconstructed the image based on the dictionary atoms and sparse coefficients to obtain the denoised image. We applied the presented method on datasets of clinical Ultrasound Elastography images of lung cancer from Nanjing First Hospital, and compared the results of the presented method and the original method. The experimental results of subjective and objective evaluation demonstrated that presented approach reached a satisfactory denoising effect and this research provides a new technical reference for computer aided diagnosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Algoritmos , Análisis por Conglomerados , Humanos , Aprendizaje Automático , Relación Señal-Ruido
6.
Comput Methods Programs Biomed ; 151: 33-43, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28947004

RESUMEN

BACKGROUND AND OBJECTIVE: Registration is a critical step in group analysis of diffusion weighted images (DWI). Image registration is also necessary for construction of white matter atlases that can be used to identify white matter changes. A challenge in the registration of DWI is that the orientation of the fiber bundles should be considered in the process, making their registration more challenging than that of the scalar images. Most of the current registration methods use a model of diffusion profile, limiting the method to the used model. METHODS: We propose a model-independent method for DWI registration. The proposed method uses a multi-level free-form deformation (FFD), a sparse similarity measure, and a dictionary. We also propose a synthesis K-SVD algorithm for sparse interpolation of images during the registration process. We utilize two dictionaries: analysis dictionary is learned based on diffusion signals while synthesis dictionary is generated based on image patches. The proposed multi-level approach registers anatomical structures at different scales. T-test is used to determine the significance of the differences between different methods. RESULTS: We have shown the efficiency of the proposed approach using real data. The method results in smaller generalized fractional anisotropy (GFA) root mean square (RMS) error (0.05 improvements, p = 0.0237) and angular error (0.37 ° improvement, p = 0.0330) compared to the large deformation diffeomorphic metric mapping (LDDMM) method and advanced normalization tools (ANTs). CONCLUSION: Sparse registration of diffusion signals enables registration of diffusion weighted images without using a diffusion model.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Aumento de la Imagen , Algoritmos , Humanos
7.
EURASIP J Image Video Process ; 2017(1): 58, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32010201

RESUMEN

BACKGROUND: Digital images are captured using sensors during the data acquisition phase, where they are often contaminated by noise (an undesired random signal). Such noise can also be produced during transmission or by poor-quality lossy image compression. Reducing the noise and enhancing the images are considered the central process to all other digital image processing tasks. The improvement in the performance of image denoising methods would contribute greatly on the results of other image processing techniques. Patch-based denoising methods recently have merged as the state-of-the-art denoising approaches for various additive noise levels. In this work, the use of the state-of-the-art patch-based denoising methods for additive noise reduction is investigated. Various types of image datasets are addressed to conduct this study. METHODS: We first explain the type of noise in digital images and discuss various image denoising approaches, with a focus on patch-based denoising methods. Then, we experimentally evaluate both quantitatively and qualitatively the patch-based denoising methods. The patch-based image denoising methods are analyzed in terms of quality and computational time. RESULTS: Despite the sophistication of patch-based image denoising approaches, most patch-based image denoising methods outperform the rest. Fast patch similarity measurements produce fast patch-based image denoising methods. CONCLUSION: Patch-based image denoising approaches can effectively reduce noise and enhance images. Patch-based image denoising approach is the state-of-the-art image denoising approach.

8.
J Neurosci Methods ; 282: 81-94, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28322859

RESUMEN

BACKGROUND: Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. NEW METHOD: The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. RESULTS AND COMPARISON WITH EXISTING METHOD: The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). CONCLUSION: The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Percepción Auditiva/fisiología , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Humanos , Percepción de Movimiento/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Oxígeno/sangre , Descanso
9.
Comput Biol Med ; 73: 56-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27085311

RESUMEN

Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.


Asunto(s)
Diagnóstico por Imagen , Imagenología Tridimensional/métodos , Femenino , Humanos , Masculino
10.
Artículo en Inglés | MEDLINE | ID: mdl-25178438

RESUMEN

Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda