Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2117640119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35320039

RESUMEN

KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.


Asunto(s)
Canales de Potasio KCNQ , Canal de Potasio KCNQ3 , Animales , Encéfalo/metabolismo , Genotipo , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Empalme de Proteína
2.
J Neurosci ; 43(38): 6479-6494, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37607817

RESUMEN

Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.


Asunto(s)
Mutación con Ganancia de Función , Canal de Potasio KCNQ2 , Canal de Potasio KCNQ3 , Trastornos del Neurodesarrollo , Animales , Ratones , Canal de Potasio KCNQ2/genética , Ratones Transgénicos , Canales de Potasio , Prosencéfalo , Células Piramidales , Canal de Potasio KCNQ3/genética
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806315

RESUMEN

Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.


Asunto(s)
Área Hipotalámica Lateral , Metanfetamina , Condicionamiento Clásico , Metanfetamina/farmacología , Neuronas , Recompensa
4.
J Neurophysiol ; 125(4): 1440-1449, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729829

RESUMEN

Retigabine is a first-in-class potassium channel opener approved for patients with epilepsy. Unfortunately, several side effects have limited its use in clinical practice, overshadowing its beneficial effects. Multiple studies have shown that retigabine acts by enhancing the activity of members of the voltage-gated KCNQ (Kv7) potassium channel family, particularly the neuronal KCNQ channels KCNQ2-KCNQ5. However, it is currently unknown whether retigabine's action in neurons is mediated by all KCNQ neuronal channels or by only a subset. This knowledge is necessary to elucidate retigabine's mechanism of action in the central nervous system and its adverse effects and to design more effective and selective retigabine analogs. In this study, we show that the action of retigabine in excitatory neurons strongly depends on the presence of KCNQ3 channels. Deletion of Kcnq3 severely limited the ability of retigabine to reduce neuronal excitability in mouse CA1 and subiculum excitatory neurons. In addition, we report that in the absence of KCNQ3 channels, retigabine can enhance CA1 pyramidal neuron activity, leading to a greater number of action potentials and reduced spike frequency adaptation; this finding further supports a key role of KCNQ3 channels in mediating the action of retigabine. Our work provides new insight into the action of retigabine in forebrain neurons, clarifying retigabine's action in the nervous system.NEW & NOTEWORTHY Retigabine has risen to prominence as a first-in-class potassium channel opener approved by the Food and Drug Administration, with potential for treating multiple neurological disorders. Here, we demonstrate that KCNQ3 channels are the primary target of retigabine in excitatory neurons, as deleting these channels greatly diminishes the effect of retigabine in pyramidal neurons. Our data provide the first indication that retigabine controls neuronal firing properties primarily through KCNQ3 channels.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Carbamatos/farmacología , Canal de Potasio KCNQ3/efectos de los fármacos , Fenilendiaminas/farmacología , Células Piramidales/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp
5.
Cell Physiol Biochem ; 55(S3): 157-170, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34318654

RESUMEN

BACKGROUND/AIMS: The Amyloid Precursor Protein (APP) is involved in the regulation of multiple cellular functions via protein-protein interactions and has been most studied with respect to Alzheimer's disease (AD). Abnormal processing of the single transmembrane-spanning C99 fragment of APP contributes to the formation of amyloid plaques, which are causally related to AD. Pathological C99 accumulation is thought to associate with early cognitive defects in AD. Here, unexpectedly, sequence analysis revealed that C99 exhibits 24% sequence identity with the KCNE1 voltage-gated potassium (Kv) channel ß subunit, comparable to the identity between KCNE1 and KCNE2-5 (21-30%). This suggested the possibility of C99 regulating Kv channels. METHODS: We quantified the effects of C99 on Kv channel function, using electrophysiological analysis of subunits expressed in Xenopus laevis oocytes, biochemical and immunofluorescence techniques. RESULTS: C99 isoform-selectively inhibited (by 30-80%) activity of a range of Kv channels. Among the KCNQ (Kv7) family, C99 isoform-selectively inhibited, shifted the voltage dependence and/or slowed activation of KCNQ2, KCNQ3, KCNQ2/3 and KCNQ5, with no effects on KCNQ1, KCNQ1-KCNE1 or KCNQ4. C99/APP co-localized with KCNQ2 and KCNQ3 in adult rat sciatic nerve nodes of Ranvier. Both C99 and full-length APP co-immunoprecipitated with KCNQ2 in vitro, yet unlike C99, APP only weakly affected KCNQ2/3 activity. Finally, C99 altered the effects on KCNQ2/3 function of inhibitors tetraethylammounium and XE991, but not openers retigabine and ICA27243. CONCLUSION: Our findings raise the possibility of C99 accumulation early in AD altering cellular excitability by modulating Kv channel activity.


Asunto(s)
Precursor de Proteína beta-Amiloide/farmacología , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antracenos/farmacología , Expresión Génica , Humanos , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Nódulos de Ranvier/efectos de los fármacos , Nódulos de Ranvier/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tetraetilamonio/farmacología , Xenopus laevis
6.
Dev Neurosci ; 43(3-4): 191-200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33794528

RESUMEN

KCNQ2 and KCNQ3 pathogenic channel variants have been associated with a spectrum of developmentally regulated diseases that vary in age of onset, severity, and whether it is transient (i.e., benign familial neonatal seizures) or long-lasting (i.e., developmental and epileptic encephalopathy). KCNQ2 and KCNQ3 channels have also emerged as a target for novel antiepileptic drugs as their activation could reduce epileptic activity. Consequently, a great effort has taken place over the last 2 decades to understand the mechanisms that control the assembly, gating, and modulation of KCNQ2 and KCNQ3 channels. The current view that KCNQ2 and KCNQ3 channels assemble as heteromeric channels (KCNQ2/3) forms the basis of our understanding of KCNQ2 and KCNQ3 channelopathies and drug design. Here, we review the evidence that supports the formation of KCNQ2/3 heteromers in neurons. We also highlight functional and transcriptomic studies that suggest channel composition might not be necessarily fixed in the nervous system, but rather is dynamic and flexible, allowing some neurons to express KCNQ2 and KCNQ3 homomers. We propose that to fully understand KCNQ2 and KCNQ3 channelopathies, we need to adopt a more flexible view of KCNQ2 and KCNQ3 channel stoichiometry, which might differ across development, brain regions, cell types, and disease states.


Asunto(s)
Epilepsia Benigna Neonatal , Epilepsia , Trastornos del Neurodesarrollo , Humanos , Canal de Potasio KCNQ2 , Canal de Potasio KCNQ3
7.
Handb Exp Pharmacol ; 267: 231-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837465

RESUMEN

Native M-current is a low-threshold, slowly activating potassium current that exerts an inhibitory control over neuronal excitability. The M-channel is primarily co-assembled by heterotetrameric Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits that are specifically expressed in the brain and peripheral nociceptive and visceral sensory neurons in the spinal cord. Reduction of M-channel function leads to neuronal hyperexcitability that defines the fundamental mechanism of neurological disorders such as epilepsy and pain, indicating that pharmacological activation of Kv7/KCNQ/M-channels may serve the basis for the therapy. The well-known KCNQ opener retigabine (ezogabine or Potiga) was approved by FDA in 2011 as an anticonvulsant used for an adjunctive treatment of partial epilepsies. Unfortunately, retigabine was discontinued in 2017 due to its side effects of blue-colored appearance of the skin and eyes after prolonged intake. In addition, flupirtine, a structural derivative of retigabine and a centrally acting non-opioid analgesic, was also withdrawn in 2018 for liver toxicity. Fortunately, these side effects are compound-structures related and can be avoided. Thus, further identification and development of novel potent and selective Kv7 channel openers may lead to an effective therapy with improved safety window for anti-epilepsy and anti-nociception.


Asunto(s)
Epilepsia , Canales de Potasio KCNQ , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Neuronas , Dolor/tratamiento farmacológico
8.
FASEB J ; 33(10): 11349-11363, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31311306

RESUMEN

Herbs have a long history of use as folk medicine anticonvulsants, yet the underlying mechanisms often remain unknown. Neuronal voltage-gated potassium channel subfamily Q (KCNQ) dysfunction can cause severe epileptic encephalopathies that are resistant to modern anticonvulsants. Here we report that cilantro (Coriandrum sativum), a widely used culinary herb that also exhibits antiepileptic and other therapeutic activities, is a highly potent KCNQ channel activator. Screening of cilantro leaf metabolites revealed that one, the long-chain fatty aldehyde (E)-2-dodecenal, activates multiple KCNQs, including the predominant neuronal isoform, KCNQ2/KCNQ3 [half maximal effective concentration (EC50), 60 ± 20 nM], and the predominant cardiac isoform, KCNQ1 in complexes with the type I transmembrane ancillary subunit (KCNE1) (EC50, 260 ± 100 nM). (E)-2-dodecenal also recapitulated the anticonvulsant action of cilantro, delaying pentylene tetrazole-induced seizures. In silico docking and mutagenesis studies identified the (E)-2-dodecenal binding site, juxtaposed between residues on the KCNQ S5 transmembrane segment and S4-5 linker. The results provide a molecular basis for the therapeutic actions of cilantro and indicate that this ubiquitous culinary herb is surprisingly influential upon clinically important KCNQ channels.-Manville, R. W., Abbott, G. W. Cilantro leaf harbors a potent potassium channel-activating anticonvulsant.


Asunto(s)
Anticonvulsivantes/farmacología , Coriandrum/química , Canales de Potasio KCNQ/metabolismo , Hojas de la Planta/química , Animales , Sitios de Unión/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Xenopus laevis/metabolismo
9.
Epilepsia ; 60(9): 1870-1880, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31418850

RESUMEN

OBJECTIVE: Pathogenic variants of KCNQ2, which encode a potassium channel subunit, cause either benign (familial) neonatal epilepsy-B(F)NE)-or KCNQ2 encephalopathy (KCNQ2 DEE). We examined the characteristics of KCNQ2 variants. METHODS: KCNQ2 pathogenic variants were collected from in-house data and two large disease databases with their clinical phenotypes. Nonpathogenic KCNQ2 variants were collected from the Genome Aggregation Database (gnomAD). Pathogenicity of all variants was reevaluated with clinical information to exclude irrelevant variants. The cumulative distribution plots of B(F)NE, KCNQ2 DEE, and gnomAD KCNQ2 variants were compared. Several algorithms predicting genetic variant pathogenicity were evaluated. RESULTS: A total of 259 individuals or pedigrees with 216 different pathogenic KCNQ2 variants and 2967 individuals with 247 different nonpathogenic variants were deemed eligible for the study. Compared to the distribution of nonpathogenic variants, B(F)NE and KCNQ2 DEE missense variants occurred in five and three specific KCNQ2 regions, respectively. Comparison between B(F)NE and KCNQ2 DEE sets showed that B(F)NE missense variants frequently localized to the intracellular domain between S2 and S3, whereas those of KCNQ2 DEE were more frequent in S6, and its adjacent pore domain, as well as in the intracellular domain between S6 and helix A. The scores of Protein Variation Effect Analyzer (PROVEAN) and Percent Accepted Mutation (PAM) 30 prediction algorithms were associated with phenotypes of the variant loci. SIGNIFICANCE: Missense variants in the intracellular domain between S2 and S3 are likely to cause B(F)NE, whereas those in S6 and its adjacent regions are more likely to cause KCNQ2 DEE. With such regional specificities of variants, PAM30 is a helpful tool to examine the possibility that a novel KCNQ2 variant is a B(F)NE or KCNQ2 DEE variant in genetic analysis.


Asunto(s)
Encefalopatías/genética , Epilepsia Benigna Neonatal/genética , Canal de Potasio KCNQ2/genética , Espasmos Infantiles/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Mutación Missense , Linaje , Fenotipo
10.
J Neurosci ; 37(3): 576-586, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100740

RESUMEN

KCNQ2 potassium channels are critical for normal brain function, as both loss-of-function and gain-of-function KCNQ2 variants can lead to various forms of neonatal epilepsy. Despite recent progress, the full spectrum of consequences as a result of KCNQ2 dysfunction in neocortical pyramidal neurons is still unknown. Here, we report that conditional ablation of Kcnq2 from mouse neocortex leads to hyperexcitability of layer 2/3 (L2/3) pyramidal neurons, exhibiting an increased input resistance and action potential frequency, as well as a reduced medium afterhyperpolarization (mAHP), a conductance partly mediated by KCNQ2 channels. Importantly, we show that introducing the KCNQ2 loss-of-function variant KCNQ2I205V into L2/3 pyramidal neurons using in utero electroporation also results in a hyperexcitable phenotype similar to the conditional knock-out. KCNQ2I205V has a right-shifted conductance-to-voltage relationship, suggesting loss of KCNQ2 channel activity at subthreshold membrane potentials is sufficient to drive large changes in L2/3 pyramidal neuronal excitability even in the presence of an intact mAHP. We also found that the changes in excitability following Kcnq2 ablation are accompanied by alterations at action potential properties, including action potential amplitude in Kcnq2-null neurons. Importantly, partial inhibition of Nav1.6 channels was sufficient to counteract the hyperexcitability of Kcnq2-null neurons. Therefore, our work shows that loss of KCNQ2 channels alters the intrinsic neuronal excitability and action potential properties of L2/3 pyramidal neurons, and identifies Nav1.6 as a new potential molecular target to reduce excitability in patients with KCNQ2 encephalopathy. SIGNIFICANCE STATEMENT: KCNQ2 channels are critical for the development of normal brain function, as KCNQ2 variants could lead to epileptic encephalopathy. However, the role of KCNQ2 channels in regulating the properties of neocortical neurons is largely unexplored. Here, we find that Kcnq2 ablation or loss-of-function at subthreshold membrane potentials leads to increased neuronal excitability of neocortical layer 2/3 (L2/3) pyramidal neurons. We also demonstrate that Kcnq2 ablation unexpectedly leads to a larger action potential amplitude. Importantly, we propose the Nav1.6 channel as a new molecular target for patients with KCNQ2 encephalopathy, as partial inhibition of these channels counteracts the increased L2/3 pyramidal neuron hyperexcitability of Kcnq2-null neurons.


Asunto(s)
Epilepsia/fisiopatología , Canal de Potasio KCNQ2/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potasio KCNQ2/deficiencia , Canal de Potasio KCNQ2/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/fisiología
11.
Epilepsia ; 57(12): 2019-2030, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27888506

RESUMEN

OBJECTIVE: To evaluate treatment responses in benign familial neonatal epilepsy (BFNE). METHODS: We recruited patients with BFNE through a multicenter international collaboration and reviewed electroclinical and genetic details, and treatment response. All patients were tested at minimum for mutations/deletions in the KCNQ2, KCNQ3, and SCN2A genes. RESULTS: Nineteen patients were included in this study. A family history of neonatal seizures was positive in 16 patients, and one additional patient had a family history of infantile seizures. Mutations or deletions of KCNQ2 were found in 14, and of KCNQ3 in 2, of the 19 patients. In all patients, seizures began at 2-5 days of life and occurred multiple times per day. Four patients developed status epilepticus. Seizures were focal, alternating between hemispheres, and characterized by asymmetric tonic posturing associated with apnea and desaturation, followed by unilateral or bilateral asynchronous clonic jerking. Twelve of 19 patients were treated with multiple medications prior to seizure cessation. Seventeen of (88%) 19 patients were seizure-free within hours of receiving oral carbamazepine (CBZ) or oxcarbazepine (OXC). Earlier initiation of CBZ was associated with shorter hospitalization (p < 0.01). No side effects of CBZ were reported. All patients had normal development and remain seizure-free at a mean follow-up period of 7.8 years (6 months-16 years). SIGNIFICANCE: This study provides evidence that CBZ is safe and rapidly effective in neonates with BFNE, even in status epilepticus. We propose that CBZ should be the drug of choice in benign familial neonatal seizures.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Carbamazepina/farmacología , Epilepsia Benigna Neonatal/tratamiento farmacológico , Preescolar , Electroencefalografía , Epilepsia Benigna Neonatal/diagnóstico por imagen , Epilepsia Benigna Neonatal/genética , Salud de la Familia , Femenino , Estudios de Seguimiento , Edad Gestacional , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canales de Potasio/genética
12.
J Neurosci ; 34(15): 5311-21, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719109

RESUMEN

KCNQ2 and KCNQ3 potassium channels have emerged as central regulators of pyramidal neuron excitability and spiking behavior. However, despite an abundance of evidence demonstrating that KCNQ2/3 heteromers underlie critical potassium conductances, it is unknown whether KCNQ2, KCNQ3, or both are obligatory for maintaining normal pyramidal neuron excitability. Here, we demonstrate that conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons in mice results in abnormal electrocorticogram activity and early death, whereas similar deletion of Kcnq3 does not. At the cellular level, Kcnq2-null, but not Kcnq3-null, CA1 pyramidal neurons show increased excitability manifested as a decreased medium afterhyperpolarization and a longer-lasting afterdepolarization. As a result, these Kcnq2-deficient neurons are hyperexcitable, responding to current injections with an increased number and frequency of action potentials. Biochemically, the Kcnq2 deficiency secondarily results in a substantial loss of KCNQ3 and KCNQ5 protein levels, whereas loss of Kcnq3 only leads to a modest reduction of other KCNQ channels. Consistent with this finding, KCNQ allosteric activators can still markedly dampen neuronal excitability in Kcnq3-null pyramidal neurons, but have only weak effects in Kcnq2-null pyramidal neurons. Together, our data reveal the indispensable function of KCNQ2 channels at both the cellular and systems levels, and demonstrate that pyramidal neurons have near normal excitability in the absence of KCNQ3 channels.


Asunto(s)
Potenciales de Acción , Epilepsia/genética , Eliminación de Gen , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/fisiología , Animales , Epilepsia/metabolismo , Epilepsia/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Células Piramidales/metabolismo
13.
Bipolar Disord ; 17(2): 150-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25041603

RESUMEN

OBJECTIVES: Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS: DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS: Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION: The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.


Asunto(s)
Trastorno Bipolar/genética , Metilación de ADN/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Adulto , Anciano , Animales , Antimaníacos/farmacología , Secuencia de Bases , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Humanos , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Compuestos de Litio/farmacología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Corteza Prefrontal/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Valproico/farmacología
14.
Hum Mutat ; 35(3): 356-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375629

RESUMEN

Mutations in the KCNQ2 and KCNQ3 genes encoding for Kv 7.2 (KCNQ2; Q2) and Kv 7.3 (KCNQ3; Q3) voltage-dependent K(+) channel subunits, respectively, cause neonatal epilepsies with wide phenotypic heterogeneity. In addition to benign familial neonatal epilepsy (BFNE), KCNQ2 mutations have been recently found in families with one or more family members with a severe outcome, including drug-resistant seizures with psychomotor retardation, electroencephalogram (EEG) suppression-burst pattern (Ohtahara syndrome), and distinct neuroradiological features, a condition that was named "KCNQ2 encephalopathy." In the present article, we describe clinical, genetic, and functional data from 17 patients/families whose electroclinical presentation was consistent with the diagnosis of BFNE. Sixteen different heterozygous mutations were found in KCNQ2, including 10 substitutions, three insertions/deletions and three large deletions. One substitution was found in KCNQ3. Most of these mutations were novel, except for four KCNQ2 substitutions that were shown to be recurrent. Electrophysiological studies in mammalian cells revealed that homomeric or heteromeric KCNQ2 and/or KCNQ3 channels carrying mutant subunits with newly found substitutions displayed reduced current densities. In addition, we describe, for the first time, that some mutations impair channel regulation by syntaxin-1A, highlighting a novel pathogenetic mechanism for KCNQ2-related epilepsies.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Sintaxina 1/genética , Animales , Biotinilación , Células CHO , Estudios de Cohortes , Cricetulus , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Humanos , Masculino , Mutagénesis Insercional , Linaje , Alineación de Secuencia
15.
Epilepsia ; 55(9): e99-105, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25052858

RESUMEN

Mutations in KCNQ2 and KCNQ3 were originally described in infants with benign familial neonatal seizures (BFNS). Recently, KCNQ2 mutations have also been shown to cause epileptic encephalopathy. This report describes three infants carrying abnormalities of KCNQ2 and one infant with a KCNQ3 mutation. The different KCNQ2 abnormalities led to different phenotypes and included a novel intragenic duplication, c.419_430dup, in an infant with BFNS, a 0.761Mb 20q13.3 contiguous gene deletion in an infant with seizures at 3 months, and a recurrent de novo missense mutation c.881C>T in a neonate with "KCNQ2-encephalopathy." The mutation in KCNQ3, c.989G>A, was novel and occurred in an infant with BFNS. KCNQ-related seizures often present with tonic/clonic manifestations, cyanosis, or apnea. Certain genotype-phenotype correlations help predict outcome. Similarly affected family members suggests benign familial "KCNQ-related" epilepsy, whereas neonatal seizures with unexplained multifocal epileptiform discharges or burst suppression on electroencephalography, and acute abnormalities of the basal ganglia/thalami are suggestive of KCNQ2-encephalopathy, which is often sporadic. 20q13.33 contiguous gene deletion encompassing KCNQ2 may harbor atypical features depending on deletion size. Although the phenotype often guides direct targeted gene testing in these conditions, array CGH should also be considered in suspected sporadic or atypical familial cases to diagnose 20q13.33 deletion.


Asunto(s)
Epilepsia/genética , Canales de Potasio KCNQ/genética , Mutación/genética , Ganglios Basales/patología , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Electroencefalografía , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Fenotipo , Tálamo/patología
16.
Epilepsy Res ; 200: 107296, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219422

RESUMEN

Mutations within the Kv7.2 and Kv7.3 genes are well described causes for genetic childhood epilepsies. Knowledge on these channels in acquired focal epilepsy, especially in mesial temporal lobe epilepsy (mTLE), however, is scarce. Here, we used the rat pilocarpine model of drug-resistant mTLE to elucidate both expression and function by quantitative polymerase-chain reaction, immunohistochemistry, and electrophysiology, respectively. We found transcriptional downregulation of Kv7.2 and Kv7.3 as well as reduced Kv7.2 expression in epileptic CA1. Consequences were altered synaptic transmission, hyperexcitability which consisted of epileptiform afterpotentials, and increased susceptibility to acute GABAergic disinhibition. Importantly, blocking Kv7 channels with XE991 increased hyperexcitability in control tissue, but not in chronically epileptic tissue suggesting that the Kv7 deficit had precluded XE991 effects in this tissue. Conversely, XE991 resulted in comparable reduction of the paired-pulse ratio in both experimental groups implying preserved presynaptic Kv7.2 function of Schaffer collateral terminals. Consistent with Kv7.2/7.3 downregulation, the Kv7.3 channel opener ß-hydroxybutyrate failed to mitigate hyperexcitability. Our findings demonstrate that compromised Kv7 function is not only relevant in genetic epilepsy, but also in acquired focal epilepsy. Moreover, they help explain reduced anti-seizure efficacy of Kv7 channel openers in drug-resistant epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Niño , Humanos , Ratas , Regulación hacia Abajo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Potenciales de la Membrana , Pilocarpina , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética
17.
Foods ; 13(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38472894

RESUMEN

Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.

18.
Front Cell Neurosci ; 18: 1380442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175503

RESUMEN

Introduction: The KCNQ2/KCNQ3 genes encode the voltage-gated K channel underlying the neuronal M-current, regulating neuronal excitability. Loss-of-function (LoF) variants cause neonatal epilepsy, treatable with the M-current-opener retigabine, which is no longer marketed due to side effects. Gain-of-function (GoF) variants cause developmental encephalopathy and autism that could be amenable to M-current, but such therapies are not clinically available. In this translational project, we investigated whether donepezil, a cholinergic drug used in Alzheimer's, suppresses M currents in vitro and improves cognitive symptoms in patients with GoF variants. Methods: (1) The effect of 1 µM donepezil on the amplitude of the M-current was measured in excitatory and inhibitory neurons of mouse primary cultured hippocampal cells. M-current was measured using the standard deactivation protocol (holding at 0 mV and deactivation at -60 mV) in the voltage-clamp configuration of the whole-cell patch clamp technique. The impact of donepezil was also examined on the spontaneous firing activity of hippocampal neurons in the current-clamp configuration. (2) Four children with autism, aged 2.5-8 years, with the following GoF variants were enrolled: KCNQ2 (p. Arg144Gln) and KCNQ 3 (p.Arg227Gln, p.Arg230Cys). Patients were treated off-label with donepezil 2.5-5 mg/d for 12 months and assessed with: clinical Global Impression of Change (CGI-c), Childhood Autism Rating Scale 2 (CARS-2), Adaptive Behavior Assessment System-II (ABAS-II), and Child Development Inventory (CDI). Results: (1) Application of donepezil for at least 6 min produced a significant inhibition of the M-current with an IC50 of 0.4 µM. At 1 µM, donepezil reduced by 67% the M-current density of excitatory neurons (2.4 ± 0.46 vs. 0.89 ± 0.15 pA/pF, p < 0.05*). In inhibitory neurons, application of 1 µM donepezil produced a lesser inhibition of 59% of the M-current density (1.39 ± 0.43 vs. 0.57 ± 0.21, p > 0.05). Donepezil (1 µM) potently increased by 2.6-fold the spontaneous firing frequency, which was prevented by the muscarinic receptor antagonist atropine (10 µM). (2) The CARS-2 decreased by 3.8 ± 4.9 points (p > 0.05), but in two patients with KCNQ3 variants, the improvement was over the 4.5 clinically relevant threshold. The global clinical change was also clinically significant in these patients (CGI-c = 1). The CDI increased by 65% (p < 0.05*), while the ABAS-II remained unchanged. Discussion: Donepezil should be repurposed as a novel alternative treatment for GoF variants in KCNQ2/KCNQ3 encephalopathy.

19.
Front Mol Neurosci ; 16: 1192628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305551

RESUMEN

Voltage-gated potassium (Kv) channels formed by α subunits KCNQ2-5 are important in regulating neuronal excitability. We previously found that GABA directly binds to and activates channels containing KCNQ3, challenging the traditional understanding of inhibitory neurotransmission. To investigate the functional significance and behavioral role of this direct interaction, mice with a mutated KCNQ3 GABA binding site (Kcnq3-W266L) were generated and subjected to behavioral studies. Kcnq3-W266L mice exhibited distinctive behavioral phenotypes, of which reduced nociceptive and stress responses were profound and sex-specific. In female Kcnq3-W266L mice, the phenotype was shifted towards more nociceptive effects, while in male Kcnq3-W266L mice, it was shifted towards the stress response. In addition, female Kcnq3-W266L mice exhibited lower motor activity and reduced working spatial memory. The neuronal activity in the lateral habenula and visual cortex was altered in the female Kcnq3-W266L mice, suggesting that GABAergic activation of KCNQ3 in these regions may play a role in the regulation of the responses. Given the known overlap between the nociceptive and stress brain circuits, our data provide new insights into a sex-dependent role of KCNQ3 in regulating neural circuits involved in nociception and stress, via its GABA binding site. These findings identify new targets for effective treatments for neurological and psychiatric conditions such as pain and anxiety.

20.
Epileptic Disord ; 25(4): 445-453, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36939707

RESUMEN

The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called "self-limited". A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling.


Asunto(s)
Epilepsia Benigna Neonatal , Epilepsia , Síndromes Epilépticos , Recién Nacido , Lactante , Humanos , Preescolar , Alfabetización , Epilepsia/diagnóstico , Epilepsia/genética , Convulsiones/genética , Pruebas Genéticas , Síndromes Epilépticos/diagnóstico , Síndromes Epilépticos/genética , Epilepsia Benigna Neonatal/genética , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda