Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39172287

RESUMEN

The genomic comparison of two Klebsiella michiganensis clinical isolates recovered from the same patient, one resistant to piperacillin-tazobactam and intermediate to cefotaxime, the other resistant to ceftazidime but susceptible to piperacillin-tazobactam, revealed one mutation in the blaOXY-1-24 gene accounting for a L169M substitution in the Ω loop. Cloning experiment in Escherichia coli demonstrated the contribution of this mutation to the hydrolysis spectrum extension towards ceftazidime and cefepime, whereas the resistance to piperacillin-tazobactam was reduced. To the best of our knowledge, this study shows for the first time that ceftazidime resistance can occur in vivo from OXY-1 precursor by structural alteration.

2.
Environ Res ; 256: 119244, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810822

RESUMEN

Industrial wastewater is a major environmental concern due to its high copper content, which poses significant toxicity to microbial life. Autoinducer-2 (AI-2) can participate in the inter- and intra-species communication and regulate the physiological functions of different bacterial species by producing AI-2 signal molecules. However, there are few research reports on the luxS gene and lsr operon functions for AI-2 in bacteria with a certain tolerance to copper. This study delves into the potential of quorum sensing mechanisms, particularly the AI-2 system, for enhancing microbial resistance to copper toxicity in Klebsiella michiganensis (KM). We detail the critical roles of the luxS gene in AI-2 synthesis and the lsr operon in AI-2 uptake, demonstrating their collective impact on enhancing copper resistance. Our findings show that mutations in the lsr operon, alongside the knockout of the luxS gene in KM strain (KMΔluxSΔlsr), significantly impair the strain's motility (p < 0.0001) and biofilm formation (p < 0.01), underscoring the operon's role in AI-2 transport. These genetic insights are pivotal for developing bioremediation strategies aimed at mitigating copper pollution in wastewater. By elucidating the mechanisms through which KM modulates copper resistance, this study highlights the broader ecological significance of leveraging microbial quorum sensing pathways for sustainable wastewater management.


Asunto(s)
Proteínas Bacterianas , Liasas de Carbono-Azufre , Cobre , Klebsiella , Operón , Percepción de Quorum , Cobre/toxicidad , Percepción de Quorum/efectos de los fármacos , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Klebsiella/genética , Klebsiella/efectos de los fármacos , Klebsiella/metabolismo , Homoserina/análogos & derivados , Homoserina/metabolismo , Lactonas/metabolismo
3.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070958

RESUMEN

AIMS: This study aimed to characterize the lytic phage vB_KmiS-Kmi2C, isolated from sewage water on a GES-positive strain of Klebsiella michiganensis. METHODS AND RESULTS: Comparative phylogenetic and network-based analyses were used to characterize the genome of phage vB_KmiS-Kmi2C (circular genome of 42 234 bp predicted to encode 55 genes), demonstrating it shared little similarity with other known phages. The phage was lytic on clinical strains of K. oxytoca (n = 2) and K. michiganensis (n = 4), and was found to both prevent biofilm formation and disrupt established biofilms produced by these strains. CONCLUSIONS: We have identified a phage capable of killing clinically relevant members of the K. oxytoca complex (KoC). The phage represents a novel virus family (proposed name Dilsviridae) and genus (proposed name Dilsvirus).


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Klebsiella oxytoca/genética , Filogenia , Biopelículas , Genoma Viral
4.
Ecotoxicol Environ Saf ; 211: 111919, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476853

RESUMEN

The aim of this study was to elucidate the effect of pH on bacterial resistance mechanisms to copper (Cu) stress by genomic and transcriptomic analysis. Klebsiella michiganensis cells were exposed to 0.5 mM CuCl2 at pH 4 and 5. Lower pH (pH < 4) strongly inhibited K. michiganensis growth, while Cu stress and higher pH (pH > 5) induced Cu precipitation in the medium. Transcriptomic analyses indicated that two groups of genes related to quorum sensing (QS) systems (lsrABCDFGKR) and type II secretion systems (T2SS) (gspCDEFGHIJKLM) were significantly up-regulated at pH 4 only. These results suggest that T2SS may be induced and controlled by QS, thereby contributing to the formation of extracellular polymeric substances (EPS) and the secretion of proteins to prevent Cu ions from entering cells. Six Cu resistance genes (cusABF, copA, cueO, and gene05308) were more significantly up-regulated at pH 4 than at pH 5. In addition, the relative expression (log2|FC=) of the sulfur assimilation genes cysHJIK was relatively higher at pH 4 than at pH 5, while the gene encoding organic sulfur metabolism, tauB, was also significantly up-regulated at only pH 4. These results indicate that the Cu efflux system can remove intracellular Cu ions from cells, and that the sulfur assimilation system is related to the detoxification of Cu ions. Furthermore, increased free Cu ions at lower pH (4) could induce communication signals among cells, thereby stimulating the response of T2SS-related genes in K. michiganensis to tolerate Cu stress. Consequently, the resistance of K. michiganensis to Cu stress is a multisystem collaborative process composed of intracellular and extracellular components.


Asunto(s)
Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Klebsiella/fisiología , Transcriptoma/fisiología , Cobre/metabolismo , Perfilación de la Expresión Génica , Iones , Klebsiella/genética
5.
J Clin Microbiol ; 58(5)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102855

RESUMEN

Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-ß-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Infección Hospitalaria/epidemiología , Detergentes , Brotes de Enfermedades , Genómica , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Klebsiella , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Filogenia , beta-Lactamasas/genética
6.
Ecotoxicol Environ Saf ; 162: 376-382, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30015182

RESUMEN

A previous study revealed that the electrolytic stimulation process in bio-electrochemical reactors (BER) can accelerate growth of sulfadiazine (SDZ) antibiotic resistant bacteria (ARB) in nutrient broth medium. However, the influence of different medium nutrient richness on the fate of ARB and the relative abundance of their corresponding antibiotic resistance genes (ARGs) in this process is unknown. Specifically, it is not clear if the fate of ARB in minimal nutrition simulated wastewater is the same as in nutrient broth under electrolytic stimulation. Therefore, in this study, nutrient broth medium and the simulated wastewater were compared to identify differences in the relative abundance of Klebsiella michiganensis LH-2 ARGs in response to the electrolytic stimulation process, as well as the fate of the strain in simulated wastewater. Lower biomass, specific growth rates and viable bacterial counts were obtained in response to the application of increasing current to simulated wastewater medium. Furthermore, the percentage of ARB lethality, which was reflected by flow cytometry analysis, increased with current in the medium. A significant positive correlation of sul genes and intI gene relative abundance versus current was also observed in nutrient broth. However, a significant negative correlation was observed in simulated wastewater because of the higher metabolic burden, which may have led to decreased ARB viability. Further investigation showed that the decrease in ARGs abundance was responsible for decreased strain tolerance to SDZ in simulated wastewater. These results reveal that minimal nutrition simulated wastewater may reduce ARB and ARGs propagation in BER.


Asunto(s)
Farmacorresistencia Microbiana/genética , Klebsiella/efectos de los fármacos , Aguas Residuales/microbiología , Bacterias/efectos de los fármacos , Reactores Biológicos , Farmacorresistencia Bacteriana/genética , Electrólisis/métodos , Genes Bacterianos , Klebsiella/genética , Purificación del Agua/métodos
8.
J Microbiol Immunol Infect ; 57(1): 138-147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953085

RESUMEN

BACKGROUND: The Klebsiella oxytoca complex is an opportunistic pathogen that has been recently identified as an actual complex. However, the characteristics of each species remain largely unknown. We aimed to study the clinical prevalence, antimicrobial profiles, genetic differences, and interaction with the host of each species of this complex. METHODS: One hundred and three clinical isolates of the K. oxytoca complex were collected from 33 hospitals belonging to 19 areas in China from 2020 to 2021. Species were identified using whole genome sequencing based on average nucleotide identity. Clinical infection characteristics of the species were analyzed. Comparative genomics and pan-genome analyses were performed on these isolates and an augmented dataset, including 622 assemblies from the National Center for Biotechnology Information. In vitro assays evaluating the adhesion ability of human respiratory epithelial cells and survivability against macrophages were performed on randomly selected isolates. RESULTS: Klebsiella michiganensis (46.6%, 48/103) and K. oxytoca (35.92%, 37/103) were the major species of the complex causing human infections. K. michiganensis had a higher genomic diversity and larger pan-genome size than did K. oxytoca. K. michiganensis isolates with blaoxy-5 had a higher resistance rate to various antibiotics, antimicrobial gene carriage rate, adhesion ability to human respiratory epithelial cells, and survival rate against macrophages than isolates of other species. CONCLUSION: Our study revealed the genetic diversity of K. michiganensis and firstly identified the highly antimicrobial-resistant profile of K. michiganensis carrying blaoxy-5.


Asunto(s)
Antibacterianos , Klebsiella oxytoca , Humanos , Antibacterianos/farmacología , Genómica , Klebsiella oxytoca/genética , Secuenciación Completa del Genoma , Infecciones por Klebsiella/microbiología
9.
Infect Drug Resist ; 17: 3569-3578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165849

RESUMEN

Objective: Klebsiella michiganensis is an emerging pathogen. In this context, we characterised a strain fxq isolated from a cerebrospinal fluid specimen of a patient with tentorial meningioma, and the K. michiganensis isolate produced carbapenemases of KPC and NDM types. Methods: The Phoenix 100 Automated Microbiology System, MALDI-TOF and whole-genome sequencing were used to identify the species. Anti-microbial susceptibility testing was also conducted with the Phoenix 100. The plasmid locations of the bla KPC-2 and bla NDM-1 genes were determined by S1-nuclease pulsed-field gel electrophoresis and Southern blot. The transfer capacity of plasmids carrying bla KPC-2 and bla NDM-1 was investigated by conjugation experiments, and the resistance plasmid stability was evaluated by culture and subculture. K. michiganensis subtypes were identified by multi-locus sequence typing. We performed whole-genome sequencing to confirm species, characterise plasmids and analyse core genes. Results: fxq was originally identified as Klebsiella oxytoca and showed resistance to imipenem and meropenem, but whole-genome sequencing identified it to be K. michiganensis. The strain fxq belonged to the novel sequence type 202 (ST202) and carried the bla KPC-2 and bla NDM-1 genes located on the pB_KPC InFIA and pE_NDM IncU plasmids, respectively. The bla KPC-2-carrying plasmid was successfully transferred to Escherichia coli EC600 by conjugation, whereas the bla NDM-1 gene on the pE_NDM plasmid was not. The pB_KPC and pE_NDM plasmids demonstrated high stability. Conclusion: This work is the first report on a carbapenem-resistant clinical isolate K. michiganensis ST202 harbouring the bla KPC-2 and bla NDM-1 genes encoded by the IncFIA and IncU plasmids, respectively.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39117141

RESUMEN

OBJECTIVES: Klebsiella spp. are leading causes of nosocomial infections. Their ability to harbour antimicrobial resistance genes makes them an important public health threat. This study aimed to report the genomic background of carbapenemase-producing Klebsiella quasipneumoniae (HV55B) and Klebsiella michiganensis (HV55D) strains isolated from fresh vegetable destined for inpatients. METHODS: Microbiological and molecular methods were used to isolate and identify the strains, which were submitted to the antimicrobial susceptibility test and pH tolerance assays. Whole genome sequencing (WGS) was performed on MiSeq and NextSeq platforms, and online available tools were applied to bioinformatic analysis of clinically relevant information. RESULTS: Both isolates were considered multidrug-resistant and tolerated pH ≥ 4 for 24 h. HV55B belonged to sequence type (ST) ST668, and presented a broad resistome and plasmids from four incompatibility groups. HV55D belonged to ST40. Both strains HV55B and HV55D were genetically close to isolates responsible for human infections around the world, which stands for the plausibility of such bacteria to cause disease in patients of the studied institution. CONCLUSIONS: Our results confirm the presence of carbapenemase-producing Klebsiella spp. in fresh foodstuffs intended for inpatients consumption. The genomes characterized here also provide clinically and genomically relevant information to forthcoming epidemiological surveillance studies.

11.
Microbiol Resour Announc ; : e0049224, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162486

RESUMEN

Several Klebsiella spp. can be the cause of urinary tract infections. Here we present the draft genome assemblies for four urinary isolates of three Klebsiella spp.: Klebsiella aerogenes UMB7541, Klebsiella michiganensis UMB11142 and UMB11423, and Klebsiella huaxiensis UMB11391 to further explore the genetic diversity of Klebsiella in the urinary tract.

12.
Microbiol Spectr ; 12(5): e0405623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563743

RESUMEN

Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.


Asunto(s)
Codonopsis , Klebsiella , Rizosfera , Microbiología del Suelo , Klebsiella/genética , Klebsiella/enzimología , Klebsiella/efectos de los fármacos , Klebsiella/crecimiento & desarrollo , Codonopsis/genética , Codonopsis/crecimiento & desarrollo , Codonopsis/microbiología , Desarrollo de la Planta , Rhizoctonia/crecimiento & desarrollo , Rhizoctonia/genética , Rhizoctonia/efectos de los fármacos , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Suelo/química
13.
Microbiol Spectr ; 11(1): e0423522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36537824

RESUMEN

The recovery and characterization of a multidrug-resistant, KPC-3-producing Klebsiella michiganensis that was obtained from Venus clam samples is reported in this study. A whole-genome sequencing (WGS) analysis using Illumina and Nanopore technologies of the K. michiganensis 23999A2 isolate revealed that the strain belonged to the new sequence type 382 (ST382) and carried seven plasmid replicon sequences, including four IncF type plasmids (FII, FIIY, FIIk, and FIB), one IncHI1 plasmid, and two Col plasmids. The FIB and FIIk plasmids showed high homology to each other and to multireplicon pKpQIL-like plasmids that are found in epidemic KPC-K. pneumoniae clones worldwide. The strain carried multiple ß-lactamase genes on the IncF plasmids: blaOXA-9 and blaTEM-1A on FIB, blaKPC-3 inserted in a Tn4401a on FIIK, and blaSHV-12 on FIIY. The IncHI1-ST11 harbored no resistance gene. The curing of the strain caused the loss of all of the bla genes and a rearrangement of the IncF plasmids. Conjugal transfer of the blaOXA-9, blaTEM-1A and blaKPC-3 genes occurred at a frequency of 5 × 10-7, using K. quasipneumoniae as a recipient, and all of the bla genes were transferred through a pKpQIL that originated from the recombination of the FIB and FIIk plasmids of the donor. A comparison with 31 K. michiganensis genomes that are available in the NCBI database showed that the closest phylogenetic relatives of K. michiganensis 23999A2 are an environmental isolate from soil in South Korea and a clinical isolate from human sputum in Japan. Finally, a pan-genome analysis showed a large accessory genome of the strain as well as the great genomic plasticity of the K. michiganensis species. IMPORTANCE Klebsiella michiganensis is an emerging nosocomial pathogen, and, so far, few studies describe isolates of clinical origin in the environment. This study contributes to the understanding of how the dissemination of carbapenem-resistance outside the hospital setting may be related to the circulation of pKpQIL-like plasmids that are derived from epidemic Klebsiella pneumoniae strains. The recovery of a carbapenem-resistant isolate in clams is of great concern, as bivalves could represent vehicles of transmission of pathogens and resistance genes to humans via the food chain. The study demonstrates the plasticity of K. michiganensis genome, which is probably useful to multiple environment adaptation and to the evolution of the species.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Filogenia , Infecciones por Klebsiella/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Klebsiella pneumoniae , beta-Lactamasas/genética , Carbapenémicos/farmacología , Hospitales , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
14.
BMC Res Notes ; 16(1): 334, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964369

RESUMEN

OBJECTIVES: The hypermucoviscous-like phenotype has been described in Klebsiella pneumoniae species complex (KpSC) and was described as a contributor of increased virulence. This study described the characterization and whole-genome sequencing of an antibiotic susceptible and hypermucoviscous-like Klebsiella michiganensis 9273 clinical isolate. DATA DESCRIPTION: Here, we report the genome sequence of a K. michiganensis clinical isolate obtained from a urinary tract infection exhibiting the hypermucoviscous-like phenotype. The draft genome sequence consisted of 145 contigs and ~ 6.6 Mb genome size. The annotation revealed 6648 coding DNA sequences and 56 tRNA genes. The strain belongs to the sequence type (ST) 50, and the OXY-1 beta-lactam resistance gene, aph(3')-Ia gene for aminoglycoside resistance and multidrug efflux pumps were identified. The fyuA siderophore receptor of yersiniabactin siderophore was identified. Increased virulence was observed in Galleria mellonella larvae model and increased capsule production was determined by uronic acid quantification. The clinical implications of this phenotype are unknown, but the patient outcome might worsen compared to susceptible- or MDR-classical K. michiganensis isolates.


Asunto(s)
Infecciones por Klebsiella , Sideróforos , Humanos , Klebsiella pneumoniae , Antibacterianos/farmacología , beta-Lactamasas/genética
15.
Infect Drug Resist ; 16: 3109-3116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228660

RESUMEN

Objective: Klebsiella michiganensis is an emerging hospital-acquired bacterial pathogen. However, there is a dearth of knowledge on the antimicrobial resistance and transmission of K. michiganensis. Here, we characterized the microbiological and genomic features of a carbapenem-resistant K. michiganensis strain harboring the blaNDM-1 gene in China. Methods: K. michiganensis strain 2563 was recovered from the sputum sample of a hospitalized patient with pulmonary infection. Whole-genome sequencing of K. michiganensis strain 2563 was conducted using both the short-read Illumina and long-read MinION platforms to thoroughly characterize the genetic context of blaNDM-carrying plasmid in K. michiganensis 2563. Furthermore, BacWGSTdb server was utilized to perform in silico multilocus sequence typing (MLST), identify antimicrobial resistance genes, and conduct genomic epidemiological analyses of the closely related isolates deposited in the public database. Results: K. michiganensis 2563 was resistant to piperacillin, aztreonam, meropenem, imipenem, amoxicillin-clavulanic acid, ampicillin, cefotaxime, cefazolin, ampicillin/sulbactam, cefepime, piperacillin-tazobactam, and ceftazidime. It belonged to sequence type (ST) 43, and the blaNDM-1 gene was found to be located on the plasmid p2563_NDM (54,035 bp). This plasmid showed remarkable similarity to other blaNDM-1-encoding plasmids found in various Enterobacterium species in the public database. The occurrence of global ST43 K. michiganensis was primarily sporadic, and the closest relative of K. michiganensis 2563 was another ST43 isolate 12,084 recovered from China in 2013, which differed by 171 SNPs. Conclusion: Our study reports the genome characteristics of a carbapenem-resistant K. michiganensis strain carrying the blaNDM-1 gene in China, highlighting the need for ongoing surveillance of this pathogen in clinical settings.

16.
AMB Express ; 13(1): 146, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112810

RESUMEN

Ustilago maydis is a pathogenic fungus in Basidiomycota causing corn smut disease. A strain of U. maydis YZZF202006 was isolated from the tumor of corn smut collected from Jingzhou city in China. The intracellular bacteria were confirmed inner hyphal of the strain YZZF202006 by PCR amplification and fluorescence in situ hybridization (FISH) and SYTO-9. An endohyphal bacterium YZUMF202001 was isolated from the protoplasts of the strain YZZF202006. It was gram-negative, short rod-shaped with smooth light yellow colony. The endohyphal bacterium was genomic evidenced as Klebsiella michiganensis on the basis of average nucleotide identity (ANI) analysis and the phylogram. Then K. michiganensis was GFP-Labeled and reintroduced into U. maydis, which confirmed the bacterium can live in hyphae of U.maydis. The bacterium can grow on N-free culture media. Its nitrogenase activity was reached av. 646.25 ± 38.61 nmol·mL- 1·h- 1 C2H4 by acetylene reduction assay. A cluster of nitrogen fixation genes (nifJHDKTXENXUSVWZMFLABQ) was found from its genome. The endohyphal K. michiganensis may play an important role to help nitrogen fixation for fungi in the future.

17.
Antibiotics (Basel) ; 12(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760759

RESUMEN

Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III systems and Illumina Nextseq 500. Annotation, transposable elements and resistance gene identification were analyzed by RAST, prokka and Plasmid Finder, respectively. According to the results, KMIB106 was resistant to multiple antimicrobials, including carbapenems, but it remained susceptible to aztreonam. The genome of KMIB106 consisted of a single chromosome and three predicted plasmids. Importantly, a novel KPC plasmid pB106-1 was found to carry the array of resistance genes in a highly different order in its variable regions, including mphA, msrE, mphE, ARR-3, addA16, sul1, dfrA27, tetD and fosA3. Plasmid pB106-2 is a typical IncFII plasmid with no resistant gene. Plasmid pB106-IMP consists of the IncN and IncX3 backbones, and two resistance genes, blaIMP-4 and blaSHV-12, were identified. Our study for the first time reported an extensively drug-resistant Klebsiella michiganensis strain recovered from a child with a respiratory infection in Southern China, which carries three mega plasmids, with pB106-1 firstly identified to carry an array of resistance genes in a distinctive order, and pB106-IMP identified as a novel IncN-IncX3 cointegrate plasmid harboring two resistance genes blaIMP-4 and blaSHV-12.

18.
Int J Food Microbiol ; 391-393: 110138, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36821986

RESUMEN

Tigecycline plays an important role in the clinical treatment of infections caused by multidrug-resistant pathogens. The emergence of plasmid-mediated tigecycline resistance genes tet(X) and tmexCD1-tmexJ1 has been reported in a variety of animal and animal-derived foods, and have the potential spread to humans, seriously limiting the choice of clinical medication. Herein, three ST92 Klebsiella michiganensis isolates co-harboring tet(X4) and tmexCD2-toprJ2 were collected from pork samples in Jiangsu Province, China. These K. michiganensis isolates were all multidrug-resistant isolates. Genome analysis showed that tmexCD2-toprJ2 and tet(X4) were located on IncFIB(K) and IncX1 plasmids, respectively. The IncFIB(K) plasmid pMX581-77k is a novel tmexCD2-toprJ2-bearing plasmid. Worryingly, there were only a small number of SNPs between K. michiganensis isolated from pork in this study and K. michiganensis from human sources, with the possibility of clonal transmission. In addition, tet(X4) and tmexCD2-toprJ2 in K. michiganensis were able to stabilize in the absence of antibiotics. The growth curve indicated that the tmexCD2-toprJ2-positive plasmid imposed a burden on the growth of host bacteria. Interestingly, we found that the high-level resistance phenotype to tigecycline in these K. michiganensis isolates was mainly mediated by tet(X4). However, both tet(X4) and tmexCD2-toprJ2 expression were significantly elevated when host bacteria were exposed to tigecycline. This study systematically investigated K. michiganensis co-carrying tet(X4) and tmexCD2-toprJ2, emphasizing the importance for continuous surveillance of tigecycline-resistant K. michiganensis in animal-derived foods.


Asunto(s)
Carne de Cerdo , Carne Roja , Porcinos , Animales , Humanos , Tigeciclina , Genómica , Antibacterianos , Plásmidos , Pruebas de Sensibilidad Microbiana
19.
Front Microbiol ; 13: 1086296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687642

RESUMEN

Klebsiella michiganensis is an increasingly important bacterial pathogen causing nosocomial infections in clinical patients. In this study, we described the molecular and genomic characteristics of a carbapenem-resistant K. michiganensis strain KM166 cultured from a one-month premature baby's blood sample. KM166 showed lower biofilm forming ability in optical density (OD) than K. pneumoniae NTUH-K2044 (0.271 ± 0.027 vs. 0.595 ± 0.054, p = 0.001), and the median lethal dose (0.684 lg CFU/mL) was lower than K. pneumoniae strain NTUH-K2044 (6.679 lg CFU/mL). A IncFII/IncFIA(HI1)/IncFIB(K) multiple replicon plasmid in KM166 was identified carrying three replicon types. It has low homology to Escherichia coli pMRY09-581ECO_1 and the highest homology similarity to the INcFIA/INcFII(p14)-type plasmid in K. michiganensis strain fxq plasmid pB_KPC, suggesting that this multiple replicon plasmid was unlikely to have been transmitted from E. coli and probably a transfer of repFIB replicon genes from other K. michiganensis strains into the INcFIA/INcFII(p14)-type plasmid of KM166 had occurred. Mapping of the gene environment revealed that bla KPC-2 in KM166 plasmid 3 had high identity and same Tn3-tnpR-IS481-bla KPC-2-klcA_1 genomic context structure with K. pneumoniae strain JKP55, plasmid pKPC-J5501, and bla KPC-2-carrying plasmid proved to be autonomously transferred under the help of mobile genetic elements into Escherichia coli 600 by plasmid conjugation experiment. In conclusion, we have characterized a K. michiganensis strain carrying multi-replicon IncFII/IncFIA(HI1)/IncFIB(K) plasmid and bla KPC-2-carrying IncFII(p14)/IncFIA plasmid in this study, which provided insights about the evolutionary diversity of plasmids carried by K. michiganensis.

20.
Infect Drug Resist ; 15: 1831-1843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444429

RESUMEN

Purpose: This study aimed to explore the genomic characterization of multidrug-resistant IncHI5-carrying Klebsiella michiganensis strains and detailed genomic dissection of the IncHI5 plasmids. Materials and Methods: Through whole-genome sequencing, the IncHI5 plasmid pK92-qnrS was obtained from a single clinical K. michiganensis isolate K92. All complete genomes of K. michiganensis strains from the Genome database of NCBI were collected and used to construct a maximum likelihood (ML) phylogenetic tree. The epidemiology and geographic distribution of all the K. michiganensis strains were conducted. An extensive comparison of the seven IncHI5 plasmids of K. michiganensis (one from this study, six from GenBank) was applied. Results: This study revealed that all K. michiganensis strains carrying IncHI5 plasmids from different clonal groups were located in the southeast coastal area of China. The backbone regions of IncHI5 plasmids were composed of replicon (repHI5B and repFIB), partition (parABC), and conjugal transfer (tra1/tra2). The main accessory resistant regions of IncHI5 could be divided into two categories, Tn1696-related region and Tn6535-related region. These seven IncHI5 plasmids carried multiple drug-resistance genes which were all mediated by the mobile genetic elements (MGEs). Conclusion: Data presented here help to provide an overall in-depth understanding of epidemiology and geographic distribution of IncHI5-carrying K. michiganensis and the structure and evolutionary history of IncHI5 plasmids.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda