Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289384

RESUMEN

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Asunto(s)
Aminobutiratos , Escherichia coli , Transaminasas , Transaminasas/genética , Escherichia coli/genética , Ácido Butírico , Glucosa 1-Deshidrogenasa , Ácido Glutámico
2.
Biotechnol Bioeng ; 120(10): 2940-2952, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227020

RESUMEN

2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Asunto(s)
Escherichia coli , Transaminasas , Transaminasas/genética , Transaminasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Aminoácidos/metabolismo
3.
Biotechnol Lett ; 44(4): 561-570, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243590

RESUMEN

With the ban of highly toxic herbicides, such as paraquat and glyphosate, phosphinothricin (PPT) is becoming the most popular broad-spectrum and highly effective herbicide. The current PPT products in the market are usually a racemic mixture with two configurations, the D-type and L-type, of which only the L-PPT has the herbicidal activity. The racemic product is not atom economic, more toxic and may cause soil damage. Asymmetric synthesis of L-PPT has become a research focus in recent years, while biological synthesis methods are preferred for its character of environmental friendly and requiring less reaction steps when being compared to the chemical methods. We have developed a biological synthesis route to produce optically pure L-PPT from D,L-PPT in two steps using 2-carbonyl-4- (hydroxymethyl phosphonyl) butyric acid as the intermediate. In this study, we expressed the glutamate dehydrogenase and glucose dehydrogenase using Pichia pastoris as the first time. After a series of optimization, the total L-PPT yield reached 84%. The developed synthesis system showed a high potential for future industrial application. Compare to the previous plasmid-carrying-E. coli expression system, the established method may avoid antibiotic usage and provided an alternative way for industrial synthesis of optically pure L-PPT.


Asunto(s)
Herbicidas , Saccharomycetales , Aminobutiratos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/metabolismo
4.
Chembiochem ; 22(2): 345-348, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815302

RESUMEN

A single-transaminase-catalyzed biocatalytic cascade was developed by employing the desired biocatalyst, ATA-117-Rd11, that showed high activity toward 2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid (PPO) and α-ketoglutarate, and low activity against pyruvate. The cascade successfully promotes a highly asymmetric amination reaction for the synthesis of l-phosphinothricin (l-PPT) with high conversion (>95 %) and>99 % ee. In a scale-up experiment, using 10 kg pre-frozen E. coli cells harboring ATA-117-Rd11 as catalyst, 80 kg PPO was converted to ≈70 kg l-PPT after 24 hours with a high ee value (>99 %).


Asunto(s)
Aminobutiratos/metabolismo , Transaminasas/metabolismo , Aminobutiratos/química , Biocatálisis , Estructura Molecular
5.
Biotechnol Lett ; 42(11): 2367-2377, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32656682

RESUMEN

OBJECTIVE: Cloning and secretory expression of an amidase from Kluyvera cryocrescens and characterization of its potential in preparation of chiral amino acids. RESULTS: An amidase belonging to the Ntn-hydrolase superfamily was identified from Kluyvera cryocrescens ZJB-17005 (Kc-Ami). The maximum activity of Kc-Ami was observed at pH 8.5 and 55 °C. Remarkably, Kc-Ami showed an excellent enantioselectivity (99% ee) using rac-4-(hydroxy(methyl)phosphoryl)-2-(2-phenylacetamido) butanoic acid as substrate. Kc-Ami remained stable at pH 7.0-9.0 and exhibited prominent thermostability with a half-life time of 59.1, 47.4 and 20.4 h at 50, 55 and 60 °C, respectively. Kc-Ami could be appllied to synthesize chiral amino acids and its derivatives with excellent enantioselectivity (> 99% ee). The synthesized chiral amino acids could contain short or long side chain, and further the side chain could be replaced with -OH, -COOH or benzene ring. CONCLUSIONS: Kc-Ami exhibited remarkable thermostability and excellent enantioselectivity for synthesizing chiral amino acids and its derivatives. This specific characteristic provides great potential for industrial application in preparation of chiral amino acids and its derivatives.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Clonación Molecular/métodos , Kluyvera/enzimología , Amidohidrolasas/química , Aminoácidos/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Kluyvera/genética , Modelos Moleculares , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Bioprocess Biosyst Eng ; 43(9): 1599-1607, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333194

RESUMEN

Transaminase responsible for alienating prochiral ketone compound is applicable to asymmetric synthesis of herbicide L-phosphinothricin (L-PPT). In this work, the covalent immobilization of recombinant transaminase from Citrobacter koseri (CkTA) was investigated on different epoxy resins. Using optimum ES-105 support, a higher immobilized activity was obtained via optimizing immobilization process in terms of enzyme loading, coupling time and initial PLP concentration. Crucially, due to blocking unreacted epoxy groups on support surface with amino acids, the reaction temperature of blocked immobilized biocatalyst was enhanced from 37 to 57 °C. Its thermostability at 57 °C was also found to be superior to that of free CkTA. The Km value was shifted from 36.75 mM of free CkTA to 39.87 mM of blocked immobilized biocatalyst, demonstrating that the affinity of enzyme to the substrate has not been apparently altered. Accordingly, the biocatalyst performed the consecutive synthesis of L-PPT for 11 cycles (yields>91%) with retaining more than 91.13% of the initial activity. The seemingly the highest reusability demonstrates this biocatalyst has prospective for reducing the costs of consecutive synthesis of L-PPT with high conversion.


Asunto(s)
Aminobutiratos/síntesis química , Proteínas Bacterianas/química , Citrobacter koseri/enzimología , Enzimas Inmovilizadas/química , Resinas Epoxi/química , Transaminasas/química , Proteínas Bacterianas/genética , Citrobacter koseri/genética , Enzimas Inmovilizadas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transaminasas/genética
7.
Appl Microbiol Biotechnol ; 102(10): 4425-4433, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29549447

RESUMEN

The objective of this study was to identify and exploit a robust biocatalyst that can be applied in reductive amination for enantioselective synthesis of the competitive herbicide L-phosphinothricin. Applying a genome mining-based library construction strategy, eight NADPH-specific glutamate dehydrogenases (GluDHs) were identified for reductively aminating 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) to L-phosphinothricin. Among them, the glutamate dehydrogenase cloned from Pseudomonas putida (PpGluDH) exhibited relatively high catalytic activity and favorable soluble expression. This enzyme was purified to homogeneity for further characterization. The specific activity of PpGluDH was 296.1 U/g-protein, which is significantly higher than the reported value for a GluDH. To the best of our knowledge, there has not been any report on protein engineering of GluDH for PPO-oriented activity. Taking full advantage of the available information and the diverse characteristics of the enzymes in the enzyme library, PpGluDH was engineered by site-directed mutation based on multiple sequence alignment. The mutant I170M, which had 2.1-fold enhanced activity, was successfully produced. When the I170M mutant was applied in the batch production of L-phosphinothricin, it showed markedly improved catalytic efficiency compared with the wild type enzyme. The conversion reached 99% (0.1 M PPO) with an L-phosphinothricin productivity of 1.35 g/h·L, which far surpassed the previously reported level. These results show that PpGluDH I170M is a promising biocatalyst for highly enantioselective synthesis of L-phosphinothricin by reductive amination.


Asunto(s)
Aminobutiratos/síntesis química , Glutamato Deshidrogenasa/metabolismo , Microbiología Industrial/métodos , Aminación , Cinética , Pseudomonas putida/enzimología
8.
Appl Microbiol Biotechnol ; 101(9): 3653-3661, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28175947

RESUMEN

A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.


Asunto(s)
Aminobutiratos/metabolismo , Bacillales/enzimología , Inhibidores Enzimáticos/metabolismo , Glutamato-Amoníaco Ligasa/aislamiento & purificación , Glutamato-Amoníaco Ligasa/metabolismo , Adenosina Difosfato/metabolismo , Bacillales/genética , Sitios de Unión , Estabilidad de Enzimas , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Glutamina/metabolismo , Enlace de Hidrógeno , Hidroxilamina/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Temperatura
9.
Enzyme Microb Technol ; 180: 110501, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39197217

RESUMEN

L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from Bradyrhizobium diazoefficiens ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal in situ, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.

10.
Biotechnol J ; 19(3): e2300744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509791

RESUMEN

NAD(P)H-dependent oxidoreductases are crucial biocatalysts for synthesizing chiral compounds. Yet, the industrial implementation of enzymatic redox reactions is often hampered by an insufficient supply of expensive nicotinamide cofactors. Here, a cofactor self-sufficient whole-cell biocatalyst was developed for the enzymatic asymmetric reduction of 2-oxo-4-[(hydroxy)(-methyl)phosphinyl] butyric acid (PPO) to L-phosphinothricin (L-PPT). The endogenous NADP+ pool was significantly enhanced by regulating Preiss-Handler pathway toward NAD(H) synthesis and, in the meantime, introducing NAD kinase to phosphorylate NAD(H) toward NADP+. The intracellular NADP(H) concentration displayed a 2.97-fold increase with the strategy compared with the wild-type strain. Furthermore, a recombinant multi-enzyme cascade biocatalytic system was constructed based on the Escherichia coli chassis. In order to balance multi-enzyme co-expression levels, the strategy of modulating rate-limiting enzyme PmGluDH by RBS strengths regulation successfully increased the catalytic efficiency of PPO conversion. Finally, the cofactor self-sufficient whole-cell biocatalyst effectively converted 300 mM PPO to L-PPT in 2 h without the need to add exogenous cofactors, resulting in a 2.3-fold increase in PPO conversion (%) from 43% to 100%, with a high space-time yield of 706.2 g L-1 d-1 and 99.9% ee. Overall, this work demonstrates a technological example for constructing a cofactor self-sufficient system for NADPH-dependent redox biocatalysis.


Asunto(s)
NADH NADPH Oxidorreductasas , NAD , NADP/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidación-Reducción , Redes y Vías Metabólicas
11.
Biochem Biophys Res Commun ; 441(1): 243-8, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24141117

RESUMEN

We present an efficient method for the production of N-acetyl-L-phosphinothricin (N-AcPt) from commercial DL-phosphinothricin (DL-PPT) by organic acetylation for use as a negative selection agent (NSA) that induces cell death in argE transgenic rice. DL-PPT was efficiently converted into N-AcPt with tetrahydrofuran (THF) and acetic anhydride (Ac2O). Chemical changes were confirmed using NMR and ATR-FTIR analyses. DL-PPT was toxic but N-AcPt did not show cytotoxic effects on leaf discs or seed germination of wild-type rice. Conversely, in argE-hpt transgenic rice, non-toxic N-AcPt showed the negative selection (NS) effect by inducing cell destruction in leaf discs and restricting seed germination. For inducing NS, ≥0.1 mg ml(-1) and ≥0.5 mg ml(-1) of N-AcPt were effective in leaf and seed assays, respectively. Further, the NS effect occurred faster in the leaf assay compared with the seed germination assay, again indicating the leaf assay was a more sensitive indicator of N-AcPt as an NSA to argE transgenic rice than the seed germination assay. This negative selection approach could be useful for the development of selectable marker free transgenic plants in the economically important monocot species and its commercialization for multiple gene transformation.


Asunto(s)
Aminobutiratos/toxicidad , Genes de Plantas/genética , Técnicas Genéticas , Oryza/efectos de los fármacos , Oryza/genética , Acetilación/efectos de los fármacos , Aminobutiratos/química , Muerte Celular/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Plantas Modificadas Genéticamente , Espectroscopía Infrarroja por Transformada de Fourier
12.
Enzyme Microb Technol ; 166: 110225, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921551

RESUMEN

L-Phosphinothricin (L-PPT) is the effective constituent in racemic PPT (a high-efficiency and broad-spectrum herbicide), and the exploitation of green and sustainable synthesis route for L-PPT has always been the focus in pesticide industry. In recent years, "one-pot, two-step" enzyme-mediated cascade strategy is a mainstream pathway to obtain L-PPT. Herein, RgDAAO and BsLeuDH were applied to expand "one-pot, two-step" process. Notably, a NADH-dependent leucine dehydrogenase from Bacillus subtilis (BsLeuDH) was firstly characterized and attempted to generate L-PPT, achieving an excellent enantioselectivity (99.9% ee). Meanwhile, a formate dehydrogenase from Pichia pastoris (PpFDH) was utilized to implement NADH cofactor regeneration and only CO2 was by-product. Sufficient amount of the corresponding keto acid precursor PPO was obtained by oxidation of D-PPT relying on a D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) with content conversion (46.1%). L-PPT was ultimately prepared from racemized PPT via oxidative deamination catalyzed by RgDAAO and reductive amination catalyzed by BsLeuDH, achieving 80.3% overall yield and > 99.9% ee value.


Asunto(s)
NADH Deshidrogenasa , NAD , Leucina-Deshidrogenasa/genética , Leucina-Deshidrogenasa/metabolismo , NAD/metabolismo , Leucina , NADH Deshidrogenasa/metabolismo
13.
Biotechnol J ; 18(9): e2300027, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37265188

RESUMEN

BACKGROUND: Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS: We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS: We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.


Asunto(s)
Escherichia coli , Lactosa , Isopropil Tiogalactósido/metabolismo , Isopropil Tiogalactósido/farmacología , Escherichia coli/metabolismo , Lactosa/metabolismo , Glutamato Deshidrogenasa/metabolismo
14.
J Biotechnol ; 343: 7-14, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34763007

RESUMEN

Transaminases catalyze the transfer of an amino group from a donor to a keto group of an acceptor substrate and are applicable to the asymmetric synthesis of herbicide L-phosphinothricin (L-PPT). Here, the important residue sites (C390, I22, V52, R141, Y138 and D239) of transaminase from Salmonella enterica (SeTA) were modified at the adjacency of the substrate-binding pocket to improve the enzyme activity. Among the constructed mutant library, the SeTA-Y138F mutant displayed higher activity than the wild-type enzyme. Compared to the wild-type, SeTA-Y138F showed improved catalytic efficiency with a 4.36-fold increase. The Km and kcat of SeTA -Y138F toward 4-(hydroxy(methyl) phosphoryl)-2-oxobutanoic acid (PPO) were 26.39 mM and 34.28 s-1, respectively. Subsequently, the three-enzyme co-expression system of E. coli BL21 (DE3)/pACYCDuet-SeTA-Y138F/pETDuet-AlaDH-BsGDH was developed by combining a alanine dehydrogenase (AlaDH) to recycle the byproduct of amino donor, a glucose dehydrogenase (BsGDH) for cofactor recycling. Under the optimized conditions, an excellent L-PPT yield of 90.8% was achieved by the whole-cell biotransformation with 500 mM PPO. It exhibited the tri-enzymatic coupling system was potential for effective production of target L-PPT.


Asunto(s)
Escherichia coli , Transaminasas , Aminobutiratos , Escherichia coli/genética , Glucosa 1-Deshidrogenasa , Transaminasas/genética
15.
3 Biotech ; 11(11): 477, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34777934

RESUMEN

Phosphinothricin (PPT) is one of the most prevalently using herbicides. The commercial phosphinothricin products are generally in the form of a racemic mixture, of which only the l-phosphinothricin (L-PPT) gives herbicidal function. Synthesis of optically pure L-PPT by deracemization of D/L-PPT is a promising way to cut down the environmental burden and manufacturing cost. To convert D/L-PPT to L-PPT, we expressed the catalytic enzymes by genomic integration in E. coli. The whole production was implemented in two steps in one pot using four catalytic enzymes, namely d-amino acid oxidase, catalase, glutamate dehydrogenase, and glucose dehydrogenase. Finally, after a series of process optimization, the results showed that with our system the overall L-PPT yield reached 86%. Our study demonstrated a new strategy for L-PPT synthesis, based on enzymes from chromosomal integrated expression, which does not depend on antibiotic selection, and shows a high potential for future industrial application.

16.
J Biotechnol ; 325: 372-379, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007350

RESUMEN

Deracemization of D,L-phosphinothricin (D,L-PPT) is one of the most promising routes for preparation of optically pure L-PPT. In this work, an efficient multi-enzyme redox cascade was developed for deracemization ofPPT, which includes oxidative reaction and reductive reaction. The oxidative reaction catalyzing oxidative deamination of D-PPT to 2-oxo-4-[(hydroxy)(-methyl)phosphinyl]butyric acid (PPO) was performed by a D-amino acid oxidase and a catalase for removing H2O2. The reductive reaction catalyzing amination of PPO to L-PPT is achieved by a glufosinate dehydrogenase and a glucose dehydrogenase for cofactor regeneration. To avoid the inhibitory effect of glucose on the oxidative reaction, a "two stages in one-pot" strategy was developed to combine these two reactions in deracemization process. By using this strategy, the L-PPT was obtained with a high yield (89 %) and > 99 % enantiomeric excess at substrate loading of 300 mM in absence of addition of extra NADP+. These encouraging results demonstrated that the developed enzyme cascade deracemization process exhibits great potential and economical competitiveness for manufacture of L-PPT from D,L-PPT.


Asunto(s)
Aminobutiratos , Peróxido de Hidrógeno , Aminobutiratos/metabolismo , Biocatálisis , Glucosa 1-Deshidrogenasa/metabolismo
17.
J Agric Food Chem ; 68(49): 14549-14554, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33232144

RESUMEN

A chemoenzymatic strategy was developed for the highly efficient synthesis of l-phosphinothricin employing a robust immobilized amidase. An enzymatic hydrolysis of 500 mM N-phenylacetyl-d,l-phosphinothricin resulted in 49.9% conversion and 99.9% ee of l-phosphinothricin within 6 h. To further evaluate the bioprocess for l-phosphinothricin production, the biotransformation was performed for 100 batches under a stirred tank reactor with an average productivity of 8.21 g L-1 h-1. Moreover, unreacted N-phenylacetyl-d-phosphinothricin was racemized and subjected to the enzymatic hydrolysis, giving l-phosphinothricin with a 22.3% yield. A total yield of 69.4% was achieved after one recycle of N-phenylacetyl-d-phosphinothricin. Significantly, this chemoenzymatic approach shows great potential in the industrial production of l-phosphinothricin.


Asunto(s)
Amidohidrolasas/química , Aminobutiratos/química , Proteínas Bacterianas/química , Biotransformación , Enzimas Inmovilizadas/química , Hidrólisis , Cinética
18.
Enzyme Microb Technol ; 135: 109493, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32146938

RESUMEN

L-phosphinothricin (L-PPT) is a competitive and environmentally friendly herbicide. To develop an efficient approach for synthesis of l-PPT, a kinetic resolution route with a novel aminoacylase (SmAcy) mined from Stenotrophomonas maltophilia using N-acetyl-PPT as a substrate was first constructed. This SmAcy exhibited high hydrolytic activity and excellent enantioselectivity (E > 200) toward N-acetyl-PPT. Optically pure l-PPT (> 99.9 % eep) was acquired with high conversion (> 49 %) within 4 h by the whole cells. On the basis of the docking analysis, a main reason for high enantioselectivity (E > 200) of SmAcy towards l-enantiomer would be that the D-N-acetyl-PPT cannot interact with the key general acid-base residue and the metal ions. A low-cost and simple preparation process of the substrate from commercially available racemic PPT for production of L-PPT was provided. A chemical racemization method of the unreacted D-enantiomer of substrate was also provided to recycle the unwanted substrate enantiomer. This study provides a potential route for the industrial production of L-PPT.


Asunto(s)
Amidohidrolasas/química , Aminobutiratos/química , Proteínas Bacterianas/química , Herbicidas/química , Stenotrophomonas maltophilia/enzimología , Biocatálisis , Cinética , Stenotrophomonas maltophilia/química , Estereoisomerismo , Especificidad por Sustrato
19.
J Biotechnol ; 312: 35-43, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32135177

RESUMEN

Biosynthesizing unnatural chiral amino acids is challenging due to the limited reductive amination activity of amino acid dehydrogenase (AADH). Here, for the asymmetric synthesis of l-phosphinothricin from 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), a glutamate dehydrogenase gene (named GluDH3) from Pseudomonas monteilii was selected, cloned and expressed in Escherichia coli (E. coli). To boost its activity, a "two-step"-based computational approach was developed and applied to select the potential beneficial amino acid positions on GluDH3. l-phosphinothricin was synthesized by GluDH-catalyzed asymmetric amination using the d-glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration. Using lyophilized E. coli cells that co-expressed GluDH3_V375S and EsGDH, up to 89.04 g L-1 PPO loading was completely converted to l-phosphinothricin within 30 min at 35 °C with a space-time yield of up to 4.752 kg·L-1·d-1. The beneficial substitution V375S with increased polar interactions between K90, T193, and substrate PPO exhibited 168.2-fold improved catalytic efficiency (kcat/KM) and 344.8-fold enhanced specific activity. After the introduction of serine residues into other GluDHs at specific positions, forty engineered GluDHs exhibited the catalytic functions of "glufosinate dehydrogenase" towards PPO.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Aminobutiratos/metabolismo , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Aminación , Aminoácido Oxidorreductasas/química , Sustitución de Aminoácidos , Bacillales/enzimología , Bacillales/genética , Clonación Molecular , Simulación por Computador , Estabilidad de Enzimas , Escherichia coli/genética , Exiguobacterium , Regulación Bacteriana de la Expresión Génica , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/química , Concentración de Iones de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis , NADP , Conformación Proteica , Ingeniería de Proteínas , Pseudomonas/enzimología , Pseudomonas/genética , Proteínas Recombinantes , Especificidad por Sustrato , Temperatura
20.
Appl Biochem Biotechnol ; 190(3): 880-895, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31515673

RESUMEN

Recombinant proteins were often expressed with His-tag to simplify the purification process. Among them, transaminase was mostly expressed with fusion tags and widely used in the production of numerous amino moieties. However, the existence of the His-tag has been reported to affect various properties of different recombinant enzymes, while the effect on transaminase was rarely studied. In this paper, we investigated the effect of His-tag on transaminase based on the various activities of 4-aminobutyrate-2-oxoglutarate transaminase (GabT) when it was expressed in vector pETDuet-1. We found that His-tag did not affect the enantioselectivity, but decreased the catalytic activity to different extents according to its existence and location. Native GabT maintained the highest catalytic activity; GabT with C-terminal His-tag showed slightly lower activity than native GabT but about 2.2-fold higher than GabT with N-terminal His-tag. Besides, other fusion tags like T7-tag and S-tag inserted between N-His-tag and GabT can relieve the decreasing effect of His-tag on GabT activity. Furthermore, whole cell catalytic activity of several transaminases was improved by deleting the N-terminal His-tag. This study provided a strategy for the efficient expression of recombinant transaminase with improved catalytic activity and might attract attention to the effect of His-tag on other enzymatic properties.


Asunto(s)
Histidina/química , Transaminasas/metabolismo , Catálisis , Enteropeptidasa/metabolismo , Plásmidos , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Transaminasas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda