RESUMEN
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Asunto(s)
Enfermedad de Parkinson , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismoRESUMEN
Our previous study showed that OmpA-deficient Salmonella Typhimurium (STM) failed to retain LAMP-1, quit Salmonella-containing vacuole (SCV) and escaped to the host cytosol. Here we show that the cytosolic population of STM ΔompA sequestered autophagic markers, syntaxin17 and LC3B in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in STM ΔsifA restored its vacuolar niche and increased interaction of LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. The OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike STM ΔompA, they retained their outer membrane stability and didn't activate the lysosomal degradation pathway aiding in their intra-macrophage survival. Finally, OmpA extracellular loop mutations protected the cytosolic STM ΔsifA from the lysosomal surveillance, revealing a unique OmpA-dependent strategy of STM for its intracellular survival.
RESUMEN
Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cß resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.
Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Fragmentos Fab de Inmunoglobulinas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Marcaje Isotópico/métodos , Humanos , Sistema Libre de Células , Isótopos de Nitrógeno , Anticuerpos Monoclonales/químicaRESUMEN
Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.
Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Ranavirus , Vacunas de ADN , Animales , Singapur , Factores de Transcripción , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/genética , Proteínas de Peces/genéticaRESUMEN
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of TRPML1 in regulating proton secretion in the immortalized human parietal cell line HGT-1. The primary focus was to investigate the involvement of TRPML1 in proton secretion using the known synthetic agonists ML-SA1 and ML-SA5 and the antagonist ML-SI3 and, furthermore, to identify food-derived compounds that target the channel. Proton secretion stimulated by ML-SA1 was reduced by 122.2 ± 22.7% by the antagonist ML-SI3. The steroid hormone 17ß-estradiol, present in animal-derived foods, diminished the proton secretory effect of ML-SA1 by 63.4 ± 14.5%. We also demonstrated a reduction in the proton secretory effects of ML-SA1 and ML-SA5 on TRPML1 knock-down cells. The food-derived compounds sulforaphane and trehalose promoted proton secretion in HGT-1 cells but may act independently of TRPML1. Also, histamine- and caffeine-induced proton secretion were affected by neither the TRPML1 antagonist ML-SI3 nor the TRPML1 knock-down. In summary, the results obtained suggest that the activation of TRPML1 promotes proton secretion in HGT-1 cells, but the channel may not participate in canonical signaling pathways.
Asunto(s)
Células Parietales Gástricas , Protones , Canales de Potencial de Receptor Transitorio , Humanos , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Línea Celular , Isotiocianatos/farmacología , Estradiol/farmacología , Estradiol/metabolismo , SulfóxidosRESUMEN
Preeclampsia (PE) is a serious hypertensive disorder affecting 4-5% of pregnancies globally, leading to maternal and perinatal morbidity and mortality and reducing life expectancy in surviving women post-gestation. Late-onset PE (LO-PE) is a clinical type of PE diagnosed after 34 weeks of gestation, being less severe than the early-onset PE (EO-PE) variant, although both entities have a notable impact on the placenta. Despite the fact that most studies have focused on EO-PE, LO-PE does not deserve less attention since its prevalence is much higher and little is known about the role of the placenta in this pathology. Via RT-qPCR and immunohistochemistry methods, we measured the gene and protein expressions of several macroautophagy markers in the chorionic villi of placentas from women who underwent LO-PE (n = 68) and compared them to normal pregnancies (n = 43). We observed a markedly distinct expression pattern, noticing a significant drop in NUP62 expression and a considerable rise in the gene and protein expressions of ULK1, ATG9A, LC3, ATG5, STX-17, and LAMP-1 in the placentas of women with LO-PE. A major induction of autophagic processes was found in the placental tissue of patients with LO-PE. Abnormal signaling expression of these molecular patterns in this condition aids in the understanding of the complexity of pathophysiology and proposes biomarkers for the clinical management of these patients.
Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Factores de Transcripción/metabolismo , Autofagia/genética , Preeclampsia/metabolismo , Estudios de Casos y ControlesRESUMEN
Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.
Asunto(s)
MicroARNs , Recién Nacido , Humanos , Femenino , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Autofagia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Two of the primary features of Parkinson's disease (PD) are the accumulation of α-synuclein (α-Syn) and the depletion of lysosomal-associated membrane protein 1 (LAMP1) in the brain. Beneficial effects of environmental enrichment (EE) have been reported on the activation of lysosomal function and the amelioration of PD symptoms. Furthermore, Reelin could be a novel therapeutic target in PD. Hence, in this study, we validated the effects of EE on the activation of LAMP1 via Reelin in PD. Heterogeneous α-Syn (A53T)-overexpressing transgenic mice (age 6 and 16 months) were exposed to EE for 8 weeks. After motor and cognitive tests, brain tissues were obtained from mice and subjected to immunohistochemistry and molecular analyses. EE ameliorated motor and non-motor symptoms, protected dopamine neurons, and reduced pathological α-Syn accumulation in the early stage of PD. Striatal Reelin levels were altered depending on the disease stage and regulated by EE in PD mice. To elucidate the underlying mechanism of the effect of EE on PD, we performed further molecular and cellular analyses using activated preformed fibril (PFF)-induced SH-SY5Y cells, an in vitro model of PD, which were treated with recombinant Reelin protein and a Reelin blocker, CR-50. The CR-50 increased pathological α-Syn accumulation and accelerated dopamine neuronal degeneration by decreasing LAMP1 in the PFF-induced PD model. Our results showed that Reelin increased LAMP1 after EE and decreased pathological α-Syn accumulation, thus protecting dopamine neurons from degeneration in the striatum and substantia nigra, and ameliorating neurobehavioral deficits. These results suggest that Reelin is a promising target in treating histopathological changes and improving behavioral symptoms associated with PD.
Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Neuroblastoma/patología , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Transgénicos , Modelos Animales de EnfermedadRESUMEN
Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering.
Asunto(s)
Células Madre Mesenquimatosas , Pericitos , Animales , Diferenciación Celular , Mamíferos , Osteogénesis , Ingeniería de Tejidos , Cicatrización de HeridasRESUMEN
Mutations in P/Q type voltage gated calcium channel (VGCC) lead severe human neurological diseases such as episodic ataxia 2, familial hemiplegic migraine 1, absence epilepsy, progressive ataxia and spinocerebellar ataxia 6. The pathogenesis of these diseases remains unclear. Mice with spontaneous mutation in the Cacna1a gene encoding the pore-forming subunit of P/Q type VGCC also exhibit ataxia, epilepsy and neurodegeneration. Based on the previous work showing that the P/Q type VGCC in neurons regulates lysosomal fusion through its calcium channel activity on lysosomes, we utilized CACNA1A mutant mice to further investigate the mechanism by which P/Q-type VGCCs regulate lysosomal function and neuronal homeostasis. We found CACNA1A mutant neurons have reduced lysosomal calcium storage without changing the resting calcium concentration in cytoplasm and the acidification of lysosomes. Immunohistochemistry and transmission electron microscopy reveal axonal degeneration due to lysosome dysfunction in the CACNA1A mutant cerebella. The calcium modulating drug thapsigargin, by depleting the ER calcium store, which locally increases the calcium concentration can alleviate the defective lysosomal fusion in mutant neurons. We propose a model that in cerebellar neurons, P/Q-type VGCC maintains the integrity of the nervous system by regulating lysosomal calcium homeostasis to affect lysosomal fusion, which in turn regulates multiple important cellular processes such as autophagy and endocytosis. This study helps us to better understand the pathogenesis of P/Q-type VGCC related neurodegenerative diseases and provides a feasible direction for future pharmacological treatment.
Asunto(s)
Ataxia , Calcio , Animales , Ataxia/genética , Homeostasis/fisiología , Lisosomas , Ratones , NeuronasRESUMEN
OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.
Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas , Humanos , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/prevención & control , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéuticoRESUMEN
Parkinson disease (PD) is a common neurodegenerative condition affecting people predominantly at old age that is characterized by a progressive loss of midbrain dopaminergic neurons and by the accumulation of α-synuclein-containing intraneuronal inclusions known as Lewy bodies. Defects in cellular degradation processes such as the autophagy-lysosomal pathway are suspected to be involved in PD progression. The mammalian Lysosomal-associated membrane proteins LAMP1 and LAMP2 are transmembrane glycoproteins localized in lysosomes and late endosomes that are involved in autophagosome/lysosome maturation and function. Here, we show that the lack of Drosophila Lamp1, the homolog of LAMP1 and LAMP2, severely increased fly susceptibility to paraquat, a pro-oxidant compound known as a potential PD inducer in humans. Moreover, the loss of Lamp1 also exacerbated the progressive locomotor defects induced by the expression of PD-associated mutant α-synuclein A30P (α-synA30P) in dopaminergic neurons. Remarkably, the ubiquitous re-expression of Lamp1 in a mutant context fully suppressed all these defects and conferred significant resistance towards both PD factors above that of wild-type flies. Immunostaining analysis showed that the brain levels of α-synA30P were unexpectedly decreased in young adult Lamp1-deficient flies expressing this protein in comparison to non-mutant controls. This suggests that Lamp1 could neutralize α-synuclein toxicity by promoting the formation of non-pathogenic aggregates in neurons. Overall, our findings reveal a novel role for Drosophila Lamp1 in protecting against oxidative stress and α-synuclein neurotoxicity in PD models, thus furthering our understanding of the function of its mammalian homologs.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Drosophila/genética , Drosophila/metabolismo , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo/genética , Mamíferos/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismoRESUMEN
Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.
Asunto(s)
N-Acetilglucosaminiltransferasas , Enfermedad de Niemann-Pick Tipo C , Animales , Asparagina/metabolismo , Asparagina/farmacología , Glicosilación , Humanos , Ratones , Ratones Endogámicos BALB C , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patologíaRESUMEN
Coronaviridae is a family of single-stranded RNA (ssRNA) viruses that can cause diseases with high mortality rates. SARS-CoV-1 and MERS-CoV appeared in 2002-2003 and 2012, respectively. A novel coronavirus, SARS-CoV-2, emerged in 2019 in Wuhan (China) and has caused more than 5 million deaths in worldwide. The entry of SARS-CoV-1 into the cell is due to the interaction of the viral spike (S) protein and the cell protein, angiotensin-converting enzyme 2 (ACE2). After infection, virus assembly occurs in Golgi apparatus-derived vesicles during exocytosis. One of the possible participants in this process is LAMP1 protein. We established transgenic Vero cell lines with increased expression of human LAMP1 gene and evaluated SARS-CoV-1 and SARS-CoV-2 production. An increase in the production of both viruses in LAMP1-expressing cells when compared with Vero cells was observed, especially in the presence of trypsin during infection. From these results it can be assumed that LAMP1 promotes SARS-CoV-1 and SARS-CoV-2 production due to enhanced exocytosis.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Animales Modificados Genéticamente , COVID-19/genética , Chlorocebus aethiops , Humanos , Proteínas de Membrana de los Lisosomas , Peptidil-Dipeptidasa A/genética , SARS-CoV-2/genética , Células VeroRESUMEN
Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT-PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan-Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ-LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ-LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ-LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up-regulation of circ-LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ-LAMP1 was linked to clinical severity, high post-operative recurrence and poor prognosis for the patients with CCA. Gain/loss-of-function assays confirmed the oncogenic role of circ-LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ-LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ-LAMP1 directly sponged miR-556-5p and miR-567, thereby releasing their suppression on YY1 at post-transcriptional level. Rescue assay indicated that the oncogenic role of circ-LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ-LAMP1 might be used as a promising biomarker/therapeutic target for CCA.
Asunto(s)
Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , MicroARNs/metabolismo , ARN Circular/genética , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , ARN Circular/metabolismoRESUMEN
The literature on the egress of different herpesviruses after secondary envelopment is contradictory. In this report, we investigated varicella-zoster virus (VZV) egress in a cell line from a child with Pompe disease, a glycogen storage disease caused by a defect in the enzyme required for glycogen digestion. In Pompe cells, both the late autophagy pathway and the mannose-6-phosphate receptor (M6PR) pathway are interrupted. We have postulated that intact autophagic flux is required for higher recoveries of VZV infectivity. To test that hypothesis, we infected Pompe cells and then assessed the VZV infectious cycle. We discovered that the infectious cycle in Pompe cells was remarkably different from that of either fibroblasts or melanoma cells. No large late endosomes filled with VZV particles were observed in Pompe cells; only individual viral particles in small vacuoles were seen. The distribution of the M6PR pathway (trans-Golgi network to late endosomes) was constrained in infected Pompe cells. When cells were analyzed with two different anti-M6PR antibodies, extensive colocalization of the major VZV glycoprotein gE (known to contain M6P residues) and the M6P receptor (M6PR) was documented in the viral highways at the surfaces of non-Pompe cells after maximum-intensity projection of confocal z-stacks, but neither gE nor the M6PR was seen in abundance at the surfaces of infected Pompe cells. Taken together, our results suggested that (i) Pompe cells lack a VZV trafficking pathway within M6PR-positive large endosomes and (ii) most infectious VZV particles in conventional cell substrates are transported via large M6PR-positive vacuoles without degradative xenophagy to the plasma membrane.IMPORTANCE The long-term goal of this research has been to determine why VZV, when grown in cultured cells, invariably is more cell associated and has a lower titer than other alphaherpesviruses, such as herpes simplex virus 1 (HSV1) or pseudorabies virus (PRV). Data from both HSV1 and PRV laboratories have identified a Rab6 secretory pathway for the transport of single enveloped viral particles from the trans-Golgi network within small vacuoles to the plasma membrane. In contrast, after secondary envelopment in fibroblasts or melanoma cells, multiple infectious VZV particles accumulated within large M6PR-positive late endosomes that were not degraded en route to the plasma membrane. We propose that this M6PR pathway is most utilized in VZV infection and least utilized in HSV1 infection, with PRV's usage being closer to HSV1's usage. Supportive data from other VZV, PRV, and HSV1 laboratories about evidence for two egress pathways are included.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Herpesvirus Humano 3/metabolismo , Infección por el Virus de la Varicela-Zóster/fisiopatología , Autofagia/fisiología , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Varicela/virología , Endosomas , Exocitosis/fisiología , Herpes Zóster/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 3/patogenicidad , Humanos , Macroautofagia/fisiología , Receptor IGF Tipo 2/metabolismo , Vacuolas , Infección por el Virus de la Varicela-Zóster/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virión , Red trans-Golgi/metabolismoRESUMEN
OBJECTIVE: Lysosomes are the major catabolic organelle of the cell and regulate the macromolecular and organelle turnover and programmed cell death. Here, we investigated the lysosome dysfunction in cartilage and its role in chondrocytes apoptosis and the associated mechanism. DESIGN: Lysosomal acidification in Osteoarthritis (OA) and aged cartilage was determined by LysoSensor staining. Lysosomal function in chondrocytes was blocked by siRNA mediated depletion of Lysosomal Associated Membrane Protein 2 (LAMP2) or with lysosome inhibitors. Chondrocyte apoptosis was determined by LDH release, Caspase-3/7 activation, TUNEL and PI uptake assays. Loss of mitochondrial membrane potential (MMP/ΔΨM) and mitochondrial superoxide level was determined by JC-1 and MitoSOX staining, respectively. Colocalization of mitochondria with BCL2 associated X (BAX) and Cytochrome c was determined by immunostaining. Destabilization of medial meniscus (DMM) was performed to induce OA in mice. RESULTS: Lysosomal acidification was found to be significantly decreased in aged mouse and human and mouse OA cartilage which also showed increased chondrocyte apoptosis. Inhibition of lysosomal function resulted in increased oxidative stress, accumulation of dysfunctional mitochondria and apoptosis in chondrocytes in monolayer and in cartilage explant cultures. Depletion of LAMP2 expression or treatment of chondrocytes with lysosomal function inhibitors increased the expression and mitochondrial translocation of BAX leading to Cytochrome c release. Lysosomal dysfunction-induced apoptosis in chondrocytes was not blocked by antioxidants MitoTempo or Diphenyleneiodonium (DPI) but was abrogated by inhibiting BAX. CONCLUSION: Lysosomal dysfunction induce apoptosis in chondrocytes through BAX-mediated mitochondrial damage and release of Cytochrome c. Our data points to lysosomal function restoration and/or BAX inhibition in chondrocytes as a therapeutic approach for OA.
Asunto(s)
Apoptosis , Artritis Experimental/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Citocromos c/metabolismo , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Osteoartritis de la Rodilla/metabolismo , Envejecimiento/metabolismo , Animales , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Meniscos Tibiales/cirugía , Ratones , Superóxidos/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Spastic paraplegia type 11 (SPG11) is the most common autosomal recessive hereditary spastic paraplegia with thinning of the corpus callosum. Spatacsin, a protein encoded by the SPG11 gene, is associated with autophagy. SPG11 patients show spastic paraplegia, intellectual disability, dementia, and parkinsonism. A previous neuropathological analysis of SPG11 cases reported neurodegeneration mimicking amyotrophic lateral sclerosis without transactivation response DNA-binding protein of 43 kDa (TDP-43) deposits and unique sequestosome 1 (SQSTM1)-positive neuronal inclusions. We performed a neuropathological examination of two Japanese patients with complicated spastic paraplegia with thinning of the corpus callosum from different families, and one was genetically diagnosed as having SPG11. Both cases showed diffuse atrophy of the brain and spinal cord. Depigmentation of the substantia nigra was also observed. Immunohistochemistry revealed widespread distribution of areas showing TDP-43 aggregation in the central nervous system. The TDP-43 deposits in the thalamus and substantia nigra especially resembled skein-like inclusions. Unique SQSTM1-positive neuronal inclusions, as previously reported, were widespread in the whole central nervous system as well as the dorsal root ganglia. Double-labeling immunofluorescence of the dorsal root ganglia revealed that the unique, large SQSTM1-positive cytoplasmic inclusions of the ganglion cells were labeled with lysosome-associated membrane protein 1 and lysosome-associated membrane protein 2. This is the first report showing TDP-43 pathology in SPG11. The common neuropathological findings of TDP-43-positive inclusions in both the cases imply a causal connection between the TDP-43 proteinopathy and autophagy dysfunction in SPG11.
Asunto(s)
Proteínas de Unión al ADN , Paraplejía Espástica Hereditaria , Humanos , Lisosomas , Mutación , Proteínas , Proteinopatías TDP-43 , Activación TranscripcionalRESUMEN
The cytoprotective versus cytotoxic role of macroautophagy in ocular ischemia/reperfusion injuries remains controversial and its effects under hyperglycemia are unclear. We investigated the involvement of autophagy in in vitro and in vivo normoglycemic and hyperglycemic models of retinal ischemia/reperfusion injury. Retinal ischemia (2 h) and reperfusion (2 or 22 h) was induced in wild-type and type I diabetic Ins2Akita/+ mice using a middle cerebral artery occlusion model. R28 retinal precursor cells were subjected to CoCl2-induced hypoxia with or without autophagic inhibitor NH4Cl. Autophagic regulation during ischemia/reperfusion was assessed through immunohistochemical detection and Western blotting of microtubule-associated protein 1A/1B-light chain 3 (LC3) and lysosomal associated membrane protein 1 (LAMP1). Effect of autophagic inhibition on cell viability and morphology under hypoxic conditions was also evaluated. Upregulation of autophagic markers in the inner retinae was seen after two hours reperfusion, with tapering of the response following 22 h of reperfusion in vivo. LC3-II turnover assays confirmed an increase in autophagic flux in our hypoxic in vitro model. Pharmacological autophagic inhibition under hypoxic conditions decreased cell survival and induced structural changes not demonstrated with autophagic inhibition alone. Yet no statistically significant different autophagic responses in ischemia/reperfusion injuries were seen between the two glycemic states.
Asunto(s)
Autofagia , Daño por Reperfusión/patología , Retina/patología , Células Madre/patología , Animales , Supervivencia Celular , Femenino , Masculino , Ratones Endogámicos C57BL , Retina/citología , Células Madre/citologíaRESUMEN
Inhaled Aspergillus fumigatus spores can be internalized by alveolar type II cells. Cell lines stably expressing fluorescently labeled components of endocytic pathway enable investigations of intracellular organization during conidia internalization and measurement of the process kinetics. The goal of this report was to evaluate the methodological appliance of cell lines for studying fungal conidia internalization. We have generated A549 cell lines stably expressing fluorescently labeled actin (LifeAct-mRuby2) and late endosomal protein (LAMP1-NeonGreen) following an evaluation of cell-pathogen interactions in live and fixed cells. Our data show that the LAMP1-NeonGreen cell line can be used to visualize conidia co-localization with LAMP1 in live and fixed cells. However, caution is necessary when using LifeAct-mRuby2-cell lines as it may affect the conidia internalization dynamics.