Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230201, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736335

RESUMEN

The Cassini mission provided evidence for a global subsurface ocean and ongoing hydrothermal activity on Enceladus, based on results from Cassini's mass spectrometers. Laboratory simulations of hydrothermal conditions on icy moons are needed to further constrain the composition of ejected ice grains containing hydrothermally altered organic material. Here, we present results from our newly established facility to simulate the processing of ocean material within the temperature range 80-150°C and the pressure range 80-130 bar, representing conditions suggested for the water-rock interface on Enceladus. With this new facility, we investigate the hydrothermal processing of triglycine (GGG) peptide and, for the first time, analyse the extracted samples using laser-induced liquid beam ion desorption (LILBID) mass spectrometry, a laboratory analogue for impact ionization mass spectrometry of ice grains in space. We outline an approach to elucidate hydrothermally processed GGG in ice grains ejected from icy moons based on characteristic differences between GGG anion and cation mass spectra. These differences are linked to hydrothermal processing and thus provide a fingerprint of hydrothermal activity on extraterrestrial bodies. These results will serve as important guidelines for biosignatures potentially obtained by a future Enceladus mission and the SUrface Dust Analyzer (SUDA) instrument onboard Europa Clipper. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
Biochem Soc Trans ; 50(3): 1057-1067, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695670

RESUMEN

Structural Biology has moved beyond the aim of simply identifying the components of a cellular subsystem towards analysing the dynamics and interactions of multiple players within a cell. This focal shift comes with additional requirements for the analytical tools used to investigate these systems of increased size and complexity, such as Native Mass Spectrometry, which has always been an important tool for structural biology. Scientific advance and recent developments, such as new ways to mimic a cell membrane for a membrane protein, have caused established methods to struggle to keep up with the increased demands. In this review, we summarize the possibilities, which Laser Induced Liquid Bead Ion Desorption (LILBID) mass spectrometry offers with regard to the challenges of modern structural biology, like increasingly complex sample composition, novel membrane mimics and advanced structural analysis, including next neighbor relations and the dynamics of complex formation.


Asunto(s)
Rayos Láser , Proteínas de la Membrana , Iones , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952662

RESUMEN

Lantibiotics subtilin and nisin are produced by Bacillus subtilis and Lactococcus lactis, respectively. To prevent toxicity of their own lantibiotic, both bacteria express specific immunity proteins, called SpaI and NisI. In addition, ABC transporters SpaFEG and NisFEG prevent lantibiotic toxicity by transporting the respective peptides to the extracellular space. Although the three-dimensional structures of SpaI and NisI have been solved, very little is known about the molecular function of either lipoprotein. Using laser-induced liquid bead ion desorption (LILBID)-mass spectrometry, we show here that subtilin interacts with SpaI monomers. The expression of either SpaI or NisI in a subtilin-nonproducing B. subtilis strain resulted in the respective strain being more resistant against either subtilin or nisin. Furthermore, pore formation provided by subtilin and nisin was prevented specifically upon the expression of either SpaI or NisI. As shown with a nisin-subtilin hybrid molecule, the C-terminal part of subtilin but not any particular lanthionine ring was needed for SpaI-mediated immunity. With respect to growth, SpaI provided less immunity against subtilin than is provided by the ABC transporter SpaFEG. However, SpaI prevented pore formation much more efficiently than SpaFEG. Taken together, our data show the physiological function of SpaI as a fast immune response to protect the cellular membrane.IMPORTANCE The two lantibiotics nisin and subtilin are produced by Lactococcus lactis and Bacillus subtilis, respectively. Both peptides have strong antimicrobial activity against Gram-positive bacteria, and therefore, appropriate protection mechanisms are required for the producing strains. To prevent toxicity of their own lantibiotic, both bacteria express immunity proteins, called SpaI and NisI, and in addition, ABC transporters SpaFEG and NisFEG. Whereas it has been shown that the ABC transporters protect the producing strains by transporting the toxic peptides to the extracellular space, the exact mode of action and the physiological function of the lipoproteins during immunity are still unknown. Understanding the exact role of lantibiotic immunity proteins is of major importance for improving production rates and for the design of newly engineered peptide antibiotics. Here, we show (i) the specificity of each lipoprotein for its own lantibiotic, (ii) the specific physical interaction of subtilin with its lipoprotein SpaI, (iii) the physiological function of SpaI in protecting the cellular membrane, and (iv) the importance of the C-terminal part of subtilin for its interaction with SpaI.


Asunto(s)
Bacillus subtilis/inmunología , Bacillus subtilis/metabolismo , Bacteriocinas/metabolismo , Inmunidad , Nisina/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Bacteriocinas/genética , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Lactococcus lactis , Lipoproteínas/genética , Lipoproteínas/inmunología , Lipoproteínas/aislamiento & purificación , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo
4.
Biochim Biophys Acta ; 1858(9): 2140-2144, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342374

RESUMEN

Methanogenic archaea share one ion gradient forming reaction in their energy metabolism catalyzed by the membrane-spanning multisubunit complex N(5)-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH or simply Mtr). In this reaction the methyl group transfer from methyl-tetrahydromethanopterin to coenzyme M mediated by cobalamin is coupled with the vectorial translocation of Na(+) across the cytoplasmic membrane. No detailed structural and mechanistic data are reported about this process. In the present work we describe a procedure to provide a highly pure and homogenous Mtr complex on the basis of a selective removal of the only soluble subunit MtrH with the membrane perturbing agent dimethyl maleic anhydride and a subsequent two-step chromatographic purification. A molecular mass determination of the Mtr complex by laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) and size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) resulted in a (MtrABCDEFG)3 heterotrimeric complex of ca. 430kDa with both techniques. Taking into account that the membrane protein complex contains various firmly bound small molecules, predominantly detergent molecules, the stoichiometry of the subunits is most likely 1:1. A schematic model for the subunit arrangement within the MtrABCDEFG protomer was deduced from the mass of Mtr subcomplexes obtained by harsh IR-laser LILBID-MS.


Asunto(s)
Proteínas Arqueales/química , Coenzimas/química , Proteínas de la Membrana/química , Methanobacteriaceae/química , Metiltransferasas/química , Pterinas/química , Proteínas Arqueales/metabolismo , Coenzimas/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Methanobacteriaceae/metabolismo , Metiltransferasas/metabolismo , Pterinas/metabolismo
5.
Expert Rev Proteomics ; 14(8): 715-723, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28737967

RESUMEN

INTRODUCTION: Integral membrane proteins and lipids constitute the bilayer membranes that surround cells and sub-cellular compartments, and modulate movements of molecules and information between them. Since membrane protein drug targets represent a disproportionately large segment of the proteome, technical developments need timely review. Areas covered: Publically available resources such as Pubmed were surveyed. Bottom-up proteomics analyses now allow efficient extraction and digestion such that membrane protein coverage is essentially complete, making up around one third of the proteome. However, this coverage relies upon hydrophilic loop regions while transmembrane domains are generally poorly covered in peptide-based strategies. Top-down mass spectrometry where the intact membrane protein is fragmented in the gas phase gives good coverage in transmembrane regions, and membrane fractions are yielding to high-throughput top-down proteomics. Exciting progress in native mass spectrometry of membrane protein complexes is providing insights into subunit stoichiometry and lipid binding, and cross-linking strategies are contributing critical in-vivo information. Expert commentary: It is clear from the literature that integral membrane proteins have yielded to advanced techniques in protein chemistry and mass spectrometry, with applications limited only by the imagination of investigators. Key advances toward translation to the clinic are emphasized.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Glicosilación , Humanos , Espectrometría de Masas , Orgánulos/metabolismo
6.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 359-369, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37957929

RESUMEN

The way in which professor Michael Przybylski has combined the spirit of research with entrepreneurship has set an example for any and all scientists. He has made significant achievements in the fields of mass spectrometry, biochemistry and medicine, and has initiated important technological developments in the area of protein analysis. Between 2016 and 2023 professor Przybylski's scientific focus shifted on protein interactions with emphasis on aptamer-protein and antibody-protein analysis. This review focuses on professor Przybylski's achievements in the last few years highlighting his impact on the scientific community, on his students and colleagues.


Asunto(s)
Bioquímica , Medicina , Humanos , Espectrometría de Masas , Logro , Anticuerpos
7.
Astrobiology ; 23(1): 60-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454287

RESUMEN

The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.


Asunto(s)
Medio Ambiente Extraterrestre , Hielo , Medio Ambiente Extraterrestre/química , Exobiología , Bacterias , Lípidos
8.
Front Microbiol ; 11: 480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300335

RESUMEN

Some anaerobic bacteria use biotin-dependent Na+-translocating decarboxylases (Bdc) of ß-keto acids or their thioester analogs as key enzymes in their energy metabolism. Glutaconyl-CoA decarboxylase (Gcd), a member of this protein family, drives the endergonic translocation of Na+ across the membrane with the exergonic decarboxylation of glutaconyl-CoA (ΔG 0' ≈-30 kJ/mol) to crotonyl-CoA. Here, we report on the molecular characterization of Gcd from Clostridium symbiosum based on native PAGE, size exclusion chromatography (SEC) and laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS). The obtained molecular mass of ca. 400 kDa fits to the DNA sequence-derived mass of 379 kDa with a subunit composition of 4 GcdA (65 kDa), 2 GcdB (35 kDa), GcdC1 (15 kDa), GcdC2 (14 kDa), and 2 GcdD (10 kDa). Low-resolution structural information was achieved from preliminary electron microscopic (EM) measurements, which resulted in a 3D reconstruction model based on negative-stained particles. The Gcd structure is built up of a membrane-spanning base primarily composed of the GcdB dimer and a solvent-exposed head with the GcdA tetramer as major component. Both globular parts are bridged by a linker presumably built up of segments of GcdC1, GcdC2 and the 2 GcdDs. The structure of the highly mobile Gcd complex represents a template for the global architecture of the Bdc family.

9.
J Am Soc Mass Spectrom ; 30(1): 181-191, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30225732

RESUMEN

Native mass spectrometry is applied for the investigation of proteins and protein complexes worldwide. The challenge in native mass spectrometry is maintaining the features of the proteins of interest, such as oligomeric state, bound ligands, or the conformation of the protein complex, during transfer from solution to gas phase. This is an essential prerequisite to allow conclusions about the solution state protein complex, based on the gas phase measurements. Therefore, soft ionization techniques are required. Widely used for the analysis of protein complexes are nanoelectro spray ionization (nESI) mass spectrometers. A newer ionization method is laser induced liquid bead ion desorption (LILBID), which is based on the release of protein complexes from solution phase via infrared (IR) laser desorption. We use both methods in our lab, depending on the requirements of the biological system we are interested in. Here we benchmark the performance of our LILBID mass spectrometer in comparison to a nESI instrument, regarding sample conditions, buffer and additive tolerances, dissociation mechanism and applicability towards soluble and membrane protein complexes. Graphical Abstract ᅟ.


Asunto(s)
Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Antiportadores/análisis , Antiportadores/química , Avidina/análisis , Avidina/química , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Tampones (Química) , Detergentes/química , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Glicerol/química , Rayos Láser , Proteínas de la Membrana/análisis , Canales de Potasio/análisis , Canales de Potasio/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda